An ab initio study of the effects of implicit and explicit hosts on the excited state properties of pentacene and its nitrogen-based derivatives has been performed using ground state density functional theory (DFT), time-dependent DFT, and ΔSCF. We observe a significant solvatochromic redshift in the excitation energy of the lowest singlet state (S1) of pentacene from inclusion in a p-terphenyl host compared to vacuum; for an explicit host consisting of six nearest neighbour p-terphenyls, we obtain a redshift of 65 meV while a conductor-like polarisable continuum model (CPCM) yields a 78 meV redshift. Comparison is made between the excitonic properties of pentacene and four of its nitrogen-based analogs, 1,8-, 2,9-, 5,12-, and 6,13-diazapentacene with the latter found to be the most distinct due to local distortions in the ground state electronic structure. We observe that a CPCM is insufficient to fully understand the impact of the host due to the presence of a mild charge-transfer (CT) coupling between the chromophore and neighbouring p-terphenyls, a phenomenon which can only be captured using an explicit model. The strength of this CT interaction increases as the nitrogens are brought closer to the central acene ring of pentacene.

1.
J. E.
Anthony
,
Chem. Rev.
106
,
5028
(
2006
).
2.
I. M.
Graz
and
S. P.
Lacour
,
Appl. Phys. Lett.
95
,
243305
(
2009
).
3.
M. M.
Payne
,
S. R.
Parkin
,
J. E.
Anthony
,
C. C.
Kuo
, and
T. N.
Jackson
,
J. Am. Chem. Soc.
127
,
4986
(
2005
).
4.
M. L.
Tang
,
A. D.
Reichardt
,
N.
Miyaki
, and
R. M.
Stoltenberg
,
J. Am. Chem. Soc.
130
,
6064
(
2008
).
5.
M. B.
Smith
and
J.
Michl
,
Annu. Rev. Phys. Chem.
64
,
361
(
2013
).
6.
M.
Oxborrow
,
J. D.
Breeze
, and
N. M.
Alford
,
Nature
488
,
353
(
2012
).
7.
J.
Breeze
,
K.-J.
Tan
,
B.
Richards
,
J.
Sathian
,
M.
Oxborrow
, and
N. M.
Alford
,
Nat. Commun.
6
,
6215
(
2015
).
8.

Note that this is an approximation to the true picture: in reality, spin is no longer a good quantum number due to spin-orbit coupling, which results in the excited states possessing both singlet character and triplet character. The excited states shown in Fig. 1 should be interpreted as mixed states dominated by either the singlet (S1) or triplet (T2) contributions. The intersystem crossing is then a vertical transition between these states.

9.
B.
Nickel
and
A. A.
Ruth
,
J. Phys. Chem.
95
,
2027
(
1991
).
10.
P. M.
Zimmerman
,
Z.
Zhang
, and
C. B.
Musgrave
,
Nat. Chem.
2
,
648
(
2010
).
11.
J.
Köhler
,
A.
Brouwer
,
E.
Groenen
, and
J.
Schmidt
,
Chem. Phys. Lett.
250
,
137
(
1996
).
12.
E.
Heinecke
,
D.
Hartmann
,
R.
Müller
, and
A.
Hese
,
J. Chem. Phys.
109
,
906
(
1998
).
13.
F.
Patterson
,
H.
Lee
,
W. L.
Wilson
, and
M.
Fayer
,
Chem. Phys.
84
,
51
(
1984
).
14.
E.
Runge
and
E. K. U.
Gross
,
Phys. Rev. Lett.
52
,
997
(
1984
).
15.
S.
Bogatko
,
P. D.
Haynes
,
J.
Sathian
,
J.
Wade
,
J.-S.
Kim
,
K.-J.
Tan
,
J.
Breeze
,
E.
Salvadori
,
A.
Horsfield
, and
M.
Oxborrow
,
J. Phys. Chem. C
120
,
8251
(
2016
).
16.
H.
Yamagata
,
J.
Norton
,
E.
Hontz
,
Y.
Olivier
,
D.
Beljonne
,
J. L.
Brédas
,
R. J.
Silbey
, and
F. C.
Spano
,
J. Chem. Phys.
134
,
204703
(
2011
).
17.
D.
Beljonne
,
H.
Yamagata
,
J. L.
Brédas
,
F. C.
Spano
, and
Y.
Olivier
,
Phys. Rev. Lett.
110
,
226402
(
2013
).
18.
C.
Sutton
,
N. R.
Tummala
,
T.
Kemper
,
S. G.
Aziz
,
J.
Sears
,
V.
Coropceanu
, and
J. L.
Brédas
,
J. Chem. Phys.
146
,
224705
(
2017
).
19.
A.
Severo Pereira Gomes
and
C. R.
Jacob
,
Annu. Rep. Prog. Chem., Sect. C: Phys. Chem.
108
,
222
(
2012
).
20.
T. J.
Zuehlsdorff
,
P. D.
Haynes
,
F.
Hanke
,
M. C.
Payne
, and
N. D. M.
Hine
,
J. Chem. Theory Comput.
12
,
1853
(
2016
).
21.
T. J.
Zuehlsdorff
,
P. D.
Haynes
,
M. C.
Payne
, and
N. D. M.
Hine
,
J. Chem. Phys.
146
,
124504
(
2017
).
22.
M. R.
Provorse
,
T.
Peev
,
C.
Xiong
, and
C. M.
Isborn
,
J. Phys. Chem. B
120
,
12148
(
2016
).
23.
C.-K.
Skylaris
,
P. D.
Haynes
,
A. A.
Mostofi
, and
M. C.
Payne
,
J. Chem. Phys.
122
,
084119
(
2005
).
24.
M.
Frisch
,
G.
Trucks
,
H.
Schlegel
,
G.
Scuseria
,
M.
Robb
,
J.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G.
Petersson
 et al, gaussian 09, Revision d.01,
Gaussian, Inc.
,
2009
.
25.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
26.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
27.
N.
Hine
,
P.
Haynes
,
A.
Mostofi
,
C.-K.
Skylaris
, and
M.
Payne
,
Comput. Phys. Commun.
180
,
1041
(
2009
).
28.
W.
Kohn
,
Phys. Rev. Lett.
76
,
3168
(
1996
).
29.
E.
Prodan
and
W.
Kohn
,
Proc. Natl. Acad. Sci. U. S. A.
102
,
11635
(
2005
).
30.
S.
Goedecker
,
Rev. Mod. Phys.
71
,
1085
(
1999
).
31.
C.-K.
Skylaris
,
A. A.
Mostofi
,
P. D.
Haynes
,
O.
Diéguez
, and
M. C.
Payne
,
Phys. Rev. B
66
,
035119
(
2002
).
32.
P. D.
Haynes
,
C.-K.
Skylaris
,
A. A.
Mostofi
, and
M. C.
Payne
,
Phys. Status Solidi B
243
,
2489
(
2006
).
33.
N. D. M.
Hine
,
M.
Robinson
,
P. D.
Haynes
,
C.-K.
Skylaris
,
M. C.
Payne
, and
A. A.
Mostofi
,
Phys. Rev. B
83
,
195102
(
2011
).
34.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
35.
H. M.
Rietveld
,
E. N.
Maslen
, and
C. J. B.
Clews
,
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
26
,
693
(
1970
).
36.
S.
Grimme
and
M.
Parac
,
ChemPhysChem
4
,
292
(
2003
).
37.
E. S.
Kadantsev
,
M. J.
Stott
, and
A.
Rubio
,
J. Chem. Phys.
124
,
134901
(
2006
).
38.
A.
Prlj
,
M. E.
Sandoval-Salinas
,
D.
Casanova
,
D.
Jacquemin
, and
C.
Corminboeuf
,
J. Chem. Theory Comput.
12
,
2652
(
2016
).
39.
L.
Kronik
,
T.
Stein
,
S.
Refaely-Abramson
, and
R.
Baer
, “
Excitation gaps of finite-sized systems from optimally tuned range-separated hybrid functionals
,”
J. Chem. Theory Comput.
8
,
1515
(
2012
).
40.
N.
Kuritz
,
T.
Stein
,
R.
Baer
, and
L.
Kronik
,
J. Chem. Theory Comput.
7
,
2408
(
2011
).
41.
T.
Stein
,
L.
Kronik
, and
R.
Baer
,
J. Am. Chem. Soc.
131
,
2818
(
2009
).
42.
O. A.
Vydrov
and
G. E.
Scuseria
,
J. Chem. Phys.
125
,
234109
(
2006
).
43.
C. O.
Almbladh
and
U.
Von Barth
,
Phys. Rev. B
31
,
3231
(
1985
).
44.
L.
Ratcliff
,
N. D. M.
Hine
, and
P. D.
Haynes
,
Phys. Rev. B
84
,
165131
(
2011
).
45.
T. J.
Zuehlsdorff
,
N. D. M.
Hine
,
J. S.
Spencer
,
N. M.
Harrison
,
D. J.
Riley
, and
P. D.
Haynes
,
J. Chem. Phys.
139
,
064104
(
2013
).
46.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
47.
V.
Barone
and
M.
Cossi
,
J. Phys. Chem. A
102
,
1995
(
1998
).
48.
I.
Kikujiro
,
K.
Minoru
, and
K.
Haruo
,
Bull. Chem. Soc. Jpn.
46
,
3385
(
1973
).
49.
T. J.
Zuehlsdorff
,
N. D. M.
Hine
,
M. C.
Payne
, and
P. D.
Haynes
,
J. Chem. Phys.
143
,
204107
(
2015
).
50.
A. E.
Reed
,
R. B.
Weinstock
, and
F.
Weinhold
,
J. Chem. Phys.
83
,
735
(
1985
).
51.
E.
Glendening
,
J.
Badenhoop
,
A.
Reed
,
J.
Carpenter
,
J.
Bohmann
,
C.
Morales
,
C.
Landis
, and
F.
Weinhold
, NBO 6.0,
Theoretical Chemistry Institute, University of Wisconsin
,
Madison, WI
.
52.
L. P.
Lee
,
D. J.
Cole
,
M. C.
Payne
, and
C.-K.
Skylaris
,
J. Comput. Chem.
34
,
429
(
2013
).
53.
T.
Lu
and
F.
Chen
,
J. Comput. Chem.
33
,
580
(
2012
).
54.
T.
Zeng
,
R.
Hoffmann
, and
N.
Ananth
,
J. Am. Chem. Soc.
136
,
5755
(
2014
).
55.
B.
Hajgató
,
D.
Szieberth
,
P.
Geerlings
,
F.
De Proft
, and
M. S.
Deleuze
,
J. Chem. Phys.
131
,
224321
(
2009
).
56.
T.-S.
Lee
,
J. P.
Lewis
, and
W.
Yang
,
Comput. Mater. Sci.
12
,
259
(
1998
).
57.
C.
Sutton
,
C.
Risko
, and
J.-L.
Brédas
,
Chem. Mater.
28
,
3
(
2016
).
58.
E. G.
Hohenstein
and
C. D.
Sherrill
,
J. Phys. Chem. A
113
,
878
(
2009
).
59.
M. J.
Peach
and
D. J.
Tozer
,
J. Phys. Chem. A
116
,
9783
(
2012
).
60.
Y.-L.
Wang
and
G.-S.
Wu
,
Int. J. Quantum Chem.
108
,
430
(
2008
).
61.
T.
Rangel
,
S. M.
Hamed
,
F.
Bruneval
, and
J. B.
Neaton
,
J. Chem. Phys.
146
,
194108
(
2017
).

Supplementary Material

You do not currently have access to this content.