Dichalcogenides are known to exhibit layered solid phases, at ambient and high pressures, where 2D layers of chemically bonded formula units are held together by van der Waals forces. These materials are of great interest for solid-state sciences and technology, along with other 2D systems such as graphene and phosphorene. SiS2 is an archetypal model system of the most fundamental interest within this ensemble. Recently, high pressure (GPa) phases with Si in octahedral coordination by S have been theoretically predicted and also experimentally found to occur in this compound. At variance with stishovite in SiO2, which is a 3D network of SiO6 octahedra, the phases with octahedral coordination in SiS2 are 2D layered. Very importantly, this type of semiconducting material was theoretically predicted to exhibit continuous bandgap closing with pressure to a poor metallic state at tens of GPa. We synthesized layered SiS2 with octahedral coordination in a diamond anvil cell at 7.5-9 GPa, by laser heating together elemental S and Si at 1300-1700 K. Indeed, Raman spectroscopy up to 64.4 GPa is compatible with continuous bandgap closing in this material with the onset of either weak metallicity or of a narrow bandgap semiconductor state with a large density of defect-induced, intra-gap energy levels, at about 57 GPa. Importantly, our investigation adds up to the fundamental knowledge of layered dichalcogenides.

1.
See https://en.wikipedia.org/wiki/2D_Materials for general information on 2D materials.
2.
N.
Bandaru
,
R. S.
Kumar
,
D.
Sneed
,
O.
Tschauner
,
J.
Baker
,
D.
Antonio
,
S.-N.
Luo
,
T.
Hartmann
,
Y.
Zhao
, and
R.
Venkat
,
J. Phys. Chem. C
118
,
3230
(
2014
).
3.
F.
Dybała
,
M. P.
Polak
,
J.
Kopaczek
,
P.
Scharoch
,
K.
Wu
,
S.
Tongay
, and
R.
Kudraw
,
Sci. Rep.
6
,
26663
(
2016
).
4.
L.
Hromadová
,
R.
Martoňák
, and
E.
Tosatti
,
Phys. Rev. B
87
,
144105
(
2013
).
5.
M.
Rifliková
,
R.
Martoňák
, and
E.
Tosatti
,
Phys. Rev. B
90
,
035108
(
2014
).
6.
Z.
Zhao
,
H.
Zhang
,
H.
Yuan
,
S.
Wang
,
Y.
Lin
,
Q.
Zeng
,
G.
Xu
,
Z.
Liu
,
G. K.
Solanki
,
K. D.
Patel
,
Y.
Cui
,
H. Y.
Hwang
, and
W. L.
Mao
,
Nat. Commun.
6
,
7312
(
2015
).
7.
R.
Aksoy
,
Y.
Ma
,
E.
Selvi
,
M. C.
Chyu
,
A.
Ertas
, and
A.
White
,
J. Phys. Chem. Solids
67
,
1914
(
2006
).
8.
Z.-H.
Chi
,
X.-M.
Zhao
,
H.
Zhang
,
A. F.
Goncharov
,
S. S.
Lobanov
,
T.
Kagayama
,
M.
Sakata
, and
X.-J.
Chen
,
Phys. Rev. Lett.
113
,
036802
(
2014
).
9.
O.
Kohulák
and
R.
Martoňák
,
Phys. Rev. B
95
,
054105
(
2017
).
10.
O.
Kohulák
,
R.
Martoňák
, and
E.
Tosatti
,
Phys. Rev. B
91
,
144113
(
2015
).
11.
J.
Evers
,
P.
Mayer
,
L.
Möckl
, and
G.
Oehlinger
,
Inorg. Chem.
54
,
1240
(
2015
).
12.
M. S.
Silverman
and
J. R.
Soulen
,
Inorg. Chem.
4
,
129
(
1965
).
13.
C. T.
Prewitt
and
H. S.
Young
,
Science
149
,
535
(
1965
).
14.
J.
Peters
and
B.
Krebs
,
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
B38
,
1270
(
1982
).
15.
T. A.
Guseva
,
K. P.
Burdina
, and
K. N.
Semenenko
,
Khimiya
32
,
85
(
1991
).
16.
M. A.
Zwijnenburg
,
R. G.
Bell
, and
F.
Cora
,
J. Solid State Chem.
181
,
2480
(
2008
).
17.
D. I.
Bletskan
,
V. V.
Vakulchak
, and
K. E.
Glukhov
,
Appl. Phys. A
117
,
1499
(
2014
).
18.
Y.
Tokuda
,
T.
Uchino
, and
T.
Yoko
,
J. Non-Cryst. Solids
282
,
256
(
2001
).
19.
J.
Wang
,
M.
Marple
,
K.
Lee
,
S.
Sen
, and
K.
Kovnir
,
J. Mater. Chem. A
4
,
11276
(
2016
).
20.
D.
Plašienka
,
R.
Martoňák
, and
E.
Tosatti
,
Sci. Rep.
6
,
37694
(
2016
).
21.
S. M.
Stishov
and
S. V.
Popova
,
Geochimija (Russ.)
10
,
837
(
1961
).
22.
M.
Lee
,
J. A.
Montoya
, and
S.
Scandolo
,
Phys. Rev. B
79
,
144102
(
2009
).
23.
S. S.
Naghavi
,
Y.
Crespo
,
R.
Martoňák
, and
E.
Tosatti
,
Phys. Rev. B
91
,
224108
(
2015
).
24.
J.
Evers
,
L.
Möckl
,
G.
Oehlinger
,
R.
Köppe
,
H.
Schnöckel
,
O.
Barkalov
,
S.
Medvedev
, and
P.
Naumov
,
Inorg. Chem.
56
,
372
(
2017
).
25.
H. K.
Mao
,
P. M.
Bell
,
J. V.
Shaner
, and
D. J.
Steinberg
,
J. Appl. Phys.
49
,
3276
(
1978
).
26.
O.
Degtyareva
,
E. R.
Hernández
,
J.
Serrano
,
M.
Somayazulu
,
H.-k.
Mao
,
E.
Gregoryanz
, and
R. J.
Hemley
,
J. Chem. Phys.
126
,
084503
(
2007
).
27.
K. S.
Andrikopoulos
,
F. A.
Gorelli
,
M.
Santoro
, and
S. N.
Yannopoulos
,
High Pressure Res.
33
,
134
(
2013
).
28.
M.
Kaczmarski
,
O. N.
Bedoya-Martínez
, and
E. R.
Hernández
,
Phys. Rev. Lett.
94
,
095701
(
2005
).
29.
L.
Liu
,
Y.
Kono
,
C.
Kennedy-Benson
,
W.
Yang
,
Y.
Bi
, and
G.
Shen
,
Phys. Rev. B
89
,
174201
(
2014
).
30.
Y.
Akahama
and
H.
Kawamura
,
J. Appl. Phys.
100
,
043516
(
2006
).
31.
P.
Giannozzi
 et al,
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
32.
M.
Lazzeri
and
F.
Mauri
,
Phys. Rev. Lett.
90
,
036401
(
2003
).
33.
F.
Cerdeira
,
T. A.
Fjeldly
, and
M.
Cardona
,
Phys. Rev. B
8
,
4734
(
1973
).
34.
D.
Olego
and
M.
Cardona
,
Phys. Rev. B
23
,
6592
(
1981
).
35.
M.
Schmid
,
H.-P.
Steinrück
, and
J. M.
Gottfried
,
Surf. Interface Anal.
46
,
505
(
2014
).
You do not currently have access to this content.