Suspensions of hard core spherical particles of diameter D with inter-core connectivity range δ can be described in terms of random geometric graphs, where nodes represent the sphere centers and edges are assigned to any two particles separated by a distance smaller than δ. By exploiting the property that closed loops of connected spheres become increasingly rare as the connectivity range diminishes, we study continuum percolation of hard spheres by treating the network of connected particles as having a tree-like structure for small δ/D. We derive an analytic expression of the percolation threshold which becomes increasingly accurate as δ/D diminishes and whose validity can be extended to a broader range of connectivity distances by a simple rescaling.

1.
D.
Stauffer
and
A.
Aharony
,
Introduction to Percolation Theory
(
Taylor & Francis
,
London
,
1994
).
2.
S.
Torquato
,
Random Heterogeneous Materials: Microstructure and Macroscopic Properties
(
Springer
,
New York
,
2002
).
3.
A. L. R.
Bug
,
S. A.
Safran
, and
I.
Webman
,
Phys. Rev. Lett.
54
,
1412
(
1985
).
4.
M. D.
Penrose
,
Ann. Appl. Probab.
6
,
528
(
1996
).
5.
S.
Torquato
,
J. Chem. Phys.
136
,
054106
(
2012
).
6.
R. H. J.
Otten
and
P.
van der Schoot
,
Phys. Rev. Lett.
103
,
225704
(
2009
);
[PubMed]
R. H. J.
Otten
and
P.
van der Schoot
,
J. Chem. Phys.
134
,
094902
(
2011
).
[PubMed]
7.
C.
Grimaldi
,
Phys. Rev. E
92
,
012126
(
2015
).
8.
A. P.
Chatterjee
and
C.
Grimaldi
,
Phys. Rev. E
92
,
032121
(
2015
).
9.
S.
Torquato
,
J. Chem. Phys.
81
,
5079
(
1984
).
10.
J.
Dall
and
M.
Christensen
,
Phys. Rev. E
66
,
016121
(
2002
).
11.
Z.
Kong
and
E. M.
Yeh
, in
Proceedings of IEEE International Symposium on Information Theory, ISIT 2007
(
IEEE
,
2007
), Vol. 1-7, p.
151
.
12.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
(
Elsevier
,
London
,
2006
).
13.
P.
Attard
,
Mol. Phys.
74
,
547
(
1991
).
14.
M.
Bradonjić
,
A.
Hagberg
, and
A. G.
Percus
,
Internet Math.
5
,
113
(
2008
).
15.
M. E. J.
Newman
,
S. H.
Strogatz
, and
D. J.
Watts
,
Phys. Rev. E
64
,
026118
(
2001
).
16.
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D.-U.
Hwang
,
Phys. Rep.
424
,
175
(
2006
).
17.
D. M.
Heyes
,
M.
Cass
, and
A. C.
Brańca
,
Mol. Phys.
104
,
3137
(
2006
).
18.
M. A.
Miller
,
J. Chem. Phys.
131
,
066101
(
2009
).
19.
G.
Ambrosetti
,
C.
Grimaldi
,
I.
Balberg
,
T.
Maeder
,
A.
Danani
, and
P.
Ryser
,
Phys. Rev. B
81
,
155434
(
2010
).
20.
C.
Grimaldi
,
M.
Cattani
, and
M. C.
Salvadori
,
J. Appl. Phys.
117
,
125302
(
2015
).
21.
M. S.
Wertheim
,
Phys. Rev. Lett.
10
,
321
(
1963
);
E.
Thiele
,
J. Chem. Phys.
39
,
474
(
1963
).
22.
A.
Trokhymchuk
,
I.
Nezbeda
,
J.
Jirsák
, and
D.
Henderson
,
J. Chem. Phys.
123
,
024501
(
2005
);
A.
Trokhymchuk
,
I.
Nezbeda
,
J.
Jirsák
, and
D.
Henderson
,
J. Chem. Phys.
124
,
149902
(
2006
).
You do not currently have access to this content.