The ability to control light-matter interactions in quantum objects opens up many avenues for new applications. We look at this issue within a fully quantized framework using a fundamental theory to describe mirror-assisted resonance energy transfer (RET) in nanostructures. The process of RET communicates electronic excitation between suitably disposed donor and acceptor particles in close proximity, activated by the initial excitation of the donor. Here, we demonstrate that the energy transfer rate can be significantly controlled by careful positioning of the RET emitters near a mirror. The results deliver equations that elicit new insights into the associated modification of virtual photon behavior, based on the quantum nature of light. In particular, our results indicate that energy transfer efficiency in nanostructures can be explicitly expedited or suppressed by a suitably positioned neighboring mirror, depending on the relative spacing and the dimensionality of the nanostructure. Interestingly, the resonance energy transfer between emitters is observed to “switch off” abruptly under suitable conditions of the RET system. This allows one to quantitatively control RET systems in a new way.

1.
M.
Mohseni
,
P.
Rebentrost
,
S.
Lloyd
, and
A.
Aspuru-Guzik
, “
Environment-assisted quantum walks in photosynthetic energy transfer
,”
J. Chem. Phys.
129
,
174106
(
2008
).
2.
P.
Rebentrost
,
M.
Mohseni
,
I.
Kassal
,
S.
Lloyd
, and
A.
Aspuru-Guzik
, “
Environment-assisted quantum transport
,”
New J. Phys.
11
,
033003
(
2009
).
3.
R.
van Grondelle
and
V. I.
Novoderezhkin
, “
Energy transfer in photosynthesis: Experimental insights and quantitative models
,”
Phys. Chem. Chem. Phys.
8
,
793
807
(
2006
).
4.
T.
Förster
, “
Zwischenmolekulare energiewanderung und fluoreszenz
,”
Ann. Phys.
437
,
55
75
(
1948
).
5.
M.
Şener
,
J.
Strümpfer
,
J.
Hsin
,
D.
Chandler
,
S.
Scheuring
,
C. N.
Hunter
, and
K.
Schulten
, “
Förster energy transfer theory as reflected in the structures of photosynthetic light-harvesting systems
,”
Chem. Phys. Chem.
12
,
518
531
(
2011
).
6.
S.
Buhbut
,
S.
Itzhakov
,
E.
Tauber
,
M.
Shalom
,
I.
Hod
,
T.
Geiger
,
Y.
Garini
,
D.
Oron
, and
A.
Zaban
, “
Built-in quantum dot antennas in dye-sensitized solar cells
,”
ACS Nano
4
,
1293
1298
(
2010
).
7.
G. D.
Scholes
,
G. R.
Fleming
,
A.
Olaya-Castro
, and
R.
van Grondelle
, “
Lessons from nature about solar light harvesting
,”
Nat. Chem.
3
,
763
774
(
2011
).
8.
D.
Sikdar
,
W.
Cheng
, and
M.
Premaratne
, “
Optically resonant magneto-electric cubic nanoantennas for ultra-directional light scattering
,”
J. Appl. Phys.
117
,
083101
(
2015
).
9.
I. L.
Medintz
,
A. R.
Clapp
,
H.
Mattoussi
,
E. R.
Goldman
,
B.
Fisher
, and
J. M.
Mauro
, “
Self-assembled nanoscale biosensors based on quantum dot FRET donors
,”
Nat. Mater.
2
,
630
638
(
2003
).
10.
K. F.
Chou
and
A. M.
Dennis
, “
Förster resonance energy transfer between quantum dot donors and quantum dot acceptors
,”
Sensors
15
,
13288
13325
(
2015
).
11.
B.
Schuler
,
E. A.
Lipman
, and
W. A.
Eaton
, “
Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy
,”
Nature
419
,
743
747
(
2002
).
12.
P.
Carriba
,
G.
Navarro
,
F.
Ciruela
,
S.
Ferré
,
V.
Casadó
,
L.
Agnati
,
A.
Cortés
,
J.
Mallol
,
K.
Fuxe
,
E. I.
Canela
 et al., “
Detection of heteromerization of more than two proteins by sequential BRET-FRET
,”
Nat. Methods
5
,
727
733
(
2008
).
13.
D. P.
Craig
and
T.
Thirunamachandran
,
Molecular Quantum Electrodynamics
(
Dover
,
New York
,
1998
).
14.
J. S.
Avery
, “
Resonance energy transfer and spontaneous photon emission
,”
Proc. Phys. Soc.
88
,
1
(
1966
).
15.
L.
Gomberoff
and
E. A.
Power
, “
The resonance transfer of excitation
,”
Proc. Phys. Soc.
88
,
281
(
1966
).
16.
D. L.
Andrews
, “
A unified theory of radiative and radiationless molecular energy transfer
,”
Chem. Phys.
135
,
195
201
(
1989
).
17.
A.
Salam
,
Molecular Quantum Electrodynamics: Long-Range Intermolecular Interactions
(
Wiley
,
Hoboken, NJ
,
2010
).
18.
D. L.
Andrews
and
D. S.
Bradshaw
, “
The role of virtual photons in nanoscale photonics
,”
Ann. Phys.
526
,
173
186
(
2014
).
19.
D. L.
Andrews
and
A. A.
Demidov
,
Resonance Energy Transfer
(
Wiley
,
1999
).
20.
D. L.
Andrews
and
J. M.
Leeder
, “
On the interactions between molecules in an off-resonant laser beam: Evaluating the response to energy migration and optically induced pair forces
,”
J. Chem. Phys.
130
,
034504
(
2009
).
21.
G. J.
Daniels
,
R. D.
Jenkins
,
D. S.
Bradshaw
, and
D. L.
Andrews
, “
Resonance energy transfer: The unified theory revisited
,”
J. Chem. Phys.
119
,
2264
2274
(
2003
).
22.
I.
Medintz
and
N.
Hildebrandt
,
FRET-Förster Resonance Energy Transfer: From Theory to Applications
(
John Wiley & Sons
,
2013
).
23.
D. L.
Andrews
and
J.
Rodríguez
, “
Resonance energy transfer: Spectral overlap, efficiency, and direction
,”
J. Chem. Phys.
127
,
084509
(
2007
).
24.
A.
Salam
, “
Mediation of resonance energy transfer by a third molecule
,”
J. Chem. Phys.
136
,
014509
(
2012
).
25.
D.
Weeraddana
,
M.
Premaratne
, and
D. L.
Andrews
, “
Direct and third-body mediated resonance energy transfer in dimensionally constrained nanostructures
,”
Phys. Rev. B
92
,
035128
(
2015
).
26.
P.
Allcock
,
R. D.
Jenkins
, and
D. L.
Andrews
, “
Laser-assisted resonance-energy transfer
,”
Phys. Rev. A
61
,
023812
(
2000
).
27.
D.
Weeraddana
,
M.
Premaratne
,
S. D.
Gunapala
, and
D. L.
Andrews
, “
Quantum electrodynamical theory of high-efficiency excitation energy transfer in laser-driven nanostructure systems
,”
Phys. Rev. B
94
,
085133
(
2016
).
28.
D.
Weeraddana
,
M.
Premaratne
, and
D. L.
Andrews
, “
Optical control of resonance energy transfer in quantum dot systems
,” in
2016 IEEE Nanotechnology Materials and Devices Conference (NMDC)
(
IEEE
,
2016
), pp.
1
2
.
29.
T.
Kobayashi
,
Q.
Zheng
, and
T.
Sekiguchi
, “
Resonance transfer of excitation for molecules between mirrors
,”
Phys. Lett. A
199
,
21
26
(
1995
).
30.
E. M.
Purcell
, “
Spontaneous emission probabilities at radio frequencies
,”
NATO ASI Series (Series B: Physics)
340
,
839
(
1995
).
31.
P. R.
Berman
,
Cavity Quantum Electrodynamics
(
Academic Press, Inc.
,
Boston, MA, USA
,
1994
).
32.
M. D.
LaCount
and
M. T.
Lusk
, “
Electric dipole coupling in optical cavities and its implications for energy transfer, up-conversion, and pooling
,”
Phys. Rev. A
93
,
063811
(
2016
).
33.
P.
Andrew
and
W. L.
Barnes
, “
Förster energy transfer in an optical microcavity
,”
Science
290
,
785
788
(
2000
).
34.
C.
Jayasekara
,
M.
Premaratne
,
S. D.
Gunapala
, and
M. I.
Stockman
, “
MoS2 spaser
,”
J. App. Phys.
119
,
133101
(
2016
).
35.
A. O.
Govorov
,
J.
Lee
, and
N. A.
Kotov
, “
Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles
,”
Phys. Rev. B
76
,
125308
(
2007
).
36.
C.
Rupasinghe
,
I. D.
Rukhlenko
, and
M.
Premaratne
, “
Spaser made of graphene and carbon nanotubes
,”
ACS Nano
8
,
2431
2438
(
2014
).
37.
M.
Premaratne
and
M. I.
Stockman
, “
Theory and technology of SPASERs
,”
Adv. Opt. Photon.
9
,
79
128
(
2017
).
38.
M.
Wubs
and
W. L.
Vos
, “
Förster resonance energy transfer rate in any dielectric nanophotonic medium with weak dispersion
,”
New J. Phys.
18
,
053037
(
2016
).
39.
R.
Swathi
and
K.
Sebastian
, “
Excitation energy transfer from a fluorophore to single-walled carbon nanotubes
,”
J. Chem. Phys.
132
,
104502
(
2010
).
40.
C. S.
Kumarasinghe
,
M.
Premaratne
,
S. D.
Gunapala
, and
G. P.
Agrawal
, “
Design of all-optical, hot-electron current-direction-switching device based on geometrical asymmetry
,”
Sci. Rep.
6
, 21470 (
2016
).
41.
M.
Premaratne
and
G. P.
Agrawal
,
Light Propagation in Gain Media
(
Cambridge University Press
,
2011
).
42.
A.
Salam
, “
A general formula for the rate of resonant transfer of energy between two electric multipole moments of arbitrary order using molecular quantum electrodynamics
,”
J. Chem. Phys.
122
,
044112
(
2005
).
43.
L.
Mandel
and
E.
Wolf
,
Optical Coherence and Quantum Optics
(
Cambridge University Press
,
1995
).
44.
R.
Woolley
, “
Gauge invariance in non–relativistic electrodynamics
,”
Proc. R. Soc. A
456
,
1803
1819
(
2000
).
45.
G.
Barton
, “
Quantum electrodynamics of atoms between parallel mirrors
,”
Phys. Scr.
T21
,
11
(
1988
).
46.
D.
Andrews
,
D.
Craig
, and
T.
Thirunamachandran
, “
Molecular quantum electrodynamics in chemical physics
,”
Int. Rev. Phys. Chem.
8
,
339
383
(
1989
).
47.
R.
Chikkaraddy
,
B.
de Nijs
,
F.
Benz
,
S. J.
Barrow
,
O. A.
Scherman
,
E.
Rosta
,
A.
Demetriadou
,
P.
Fox
,
O.
Hess
, and
J. J.
Baumberg
, “
Single-molecule strong coupling at room temperature in plasmonic nanocavities
,”
Nature
535
,
127
(
2016
).
48.
M.
Steiner
,
F.
Schleifenbaum
,
C.
Stupperich
,
A.
Virgilio Failla
,
A.
Hartschuh
, and
A. J.
Meixner
, “
Microcavity-controlled single-molecule fluorescence
,”
ChemPhysChem
6
,
2190
2196
(
2005
).
49.
G. J.
Daniels
and
D. L.
Andrews
, “
Corrected Article: The electronic influence of a third body on resonance energy transfer [J. Chem. Phys. 116, 6701 (2002)]
,”
J. Chem. Phys.
117
,
6882
6893
(
2002
).
50.
G. D.
Scholes
and
D. L.
Andrews
, “
Resonance energy transfer and quantum dots
,”
Phys. Rev. B
72
,
125331
(
2005
).
51.
D.
Geissler
,
N. G.
Butlin
,
D.
Hill
,
H.-G.
Löhmannsröben
, and
N.
Hildebrandt
, “
Multiplexed diagnostics and spectroscopic ruler applications with terbium to quantum dots FRET
,”
7368
,
73680P
(
2009
).
52.
A.
Samanta
,
Y.
Zhou
,
S.
Zou
,
H.
Yan
, and
Y.
Liu
, “
Fluorescence quenching of quantum dots by gold nanoparticles: A potential long range spectroscopic ruler
,”
Nano Lett.
14
,
5052
5057
(
2014
).
53.
F.
Morgner
,
D.
Geißler
,
S.
Stufler
,
N. G.
Butlin
,
H.-G.
Löhmannsröben
, and
N.
Hildebrandt
, “
A quantum-dot-based molecular ruler for multiplexed optical analysis
,”
Angew. Chem., Int. Ed.
49
,
7570
7574
(
2010
).
54.
F.
Frezza
,
L.
Pajewski
,
D.
Saccoccioni
, and
G.
Schettini
, “
Plane-wave expansion of cylindrical functions in lossy media
,”
Opt. Commun.
265
,
47
51
(
2006
).
55.
R.
El-Ganainy
and
S.
John
, “
Resonant dipole–dipole interaction in confined and strong-coupling dielectric geometries
,”
New J. Phys
15
,
083033
(
2013
).
56.
D. L.
Dexter
, “
A theory of sensitized luminescence in solids
,”
J. Chem. Phys.
21
,
836
850
(
1953
).
57.
R. D.
Mattuck
,
A Guide to Feynman Diagrams in the Many-Body Problem
(
Dover
,
New York
,
1992
).
58.
R. P.
Feyman
, “
QED: The strange theory of light and matter
” (
Princeton University Press
,
2006
).
59.
Y.
Tang
and
A. E.
Cohen
, “
Optical chirality and its interaction with matter
,”
Phys. Rev. Lett.
104
,
163901
(
2010
).
60.
Y.
Tang
and
A. E.
Cohen
, “
Enhanced enantioselectivity in excitation of chiral molecules by superchiral light
,”
Science
332
,
333
336
(
2011
).
61.
M. M.
Coles
and
D. L.
Andrews
, “
Chirality and angular momentum in optical radiation
,”
Phys. Rev. A
85
,
063810
(
2012
).
62.
M. M.
Coles
and
D. L.
Andrews
, “
Photonic measures of helicity: Optical vortices and circularly polarized reflection
,”
Opt. Lett.
38
,
869
871
(
2013
).
You do not currently have access to this content.