Membrane fission is a fundamental process in cells, involved inter alia in endocytosis, intracellular trafficking, and virus infection. Its underlying molecular mechanism, however, is only incompletely understood. Recently, experiments and computer simulation studies have revealed that dynamin-mediated membrane fission is a two-step process that proceeds via a metastable hemi-fission intermediate (or wormlike micelle) formed by dynamin’s constriction. Importantly, this hemi-fission intermediate is remarkably metastable, i.e., its subsequent rupture that completes the fission process does not occur spontaneously but requires additional, external effects, e.g., dynamin’s (unknown) conformational changes or membrane tension. Using simulations of a coarse-grained, implicit-solvent model of lipid membranes, we investigate the molecular mechanism of rupturing the hemi-fission intermediate, such as its pathway, the concomitant transition states, and barriers, as well as the role of membrane tension. The membrane tension is controlled by the chemical potential of the lipids, and the free-energy landscape as a function of two reaction coordinates is obtained by grand canonical Wang-Landau sampling. Our results show that, in the course of rupturing, the hemi-fission intermediate undergoes a “thinning local pinching rupture/fission” pathway, with a bottle-neck-shaped cylindrical micelle as a transition state. Although an increase of membrane tension facilitates the fission process by reducing the corresponding free-energy barrier, for biologically relevant tensions, the free-energy barriers still significantly exceed the thermal energy scale kBT.

1.
B.
Alberts
,
D.
Brays
,
J.
Lewis
,
M.
Raff
,
K.
Roberts
, and
J. D.
Watson
,
Molecular Biology of the Cell
, 4th ed. (
Garland Science
,
2002
).
2.
O. G.
Mouritsen
,
Life: As a Matter of Fat
(
Springer
,
2004
).
3.
R.
Phillips
,
J.
Kondev
,
J.
Theriot
, and
H. G.
Garcia
,
Physical Biology of the Cell
, 2nd ed. (
Garland Science
,
2013
).
4.
R.
Jahn
and
R. H.
Scheller
, “
SNAREs—Engines for membrane fusion
,”
Nat. Rev. Mol. Cell Biol.
7
,
631
(
2006
).
5.
T. C.
Sudhof
and
J. E.
Rothman
, “
Membrane fusion: Grappling with SNARE and SM proteins
,”
Science
323
,
474
(
2009
).
6.
L. V.
Chernomordik
and
M. M.
Kozlov
, “
Protein-lipid interplay in fusion and fission of biological membranes
,”
Annu. Rev. Biochem.
72
,
175
(
2003
).
7.
R.
Jahn
and
H.
Grubmüller
, “
Membrane fusion
,”
Curr. Opin. Cell Biol.
14
,
488
(
2002
).
8.
L. V.
Chernomordik
and
M. M.
Kozlov
, “
Mechanics of membrane fusion
,”
Nat. Struct. Mol. Biol.
15
,
675
(
2008
).
9.
S.
Martens
and
H. T.
McMahon
, “
Mechanisms of membrane fusion: Disparate players and common principles
,”
Nat. Rev. Mol. Cell Biol.
9
,
543
(
2008
).
10.
M.
Fuhrmans
,
G.
Marelli
,
Y. G.
Smirnova
, and
M.
Müller
, “
Mechanics of membrane fusion/pore formation
,”
Chem. Phys. Lipids
185
,
109
(
2015
).
11.
H. J.
Risselada
and
H.
Grubmüller
, “
How SNARE molecules mediate membrane fusion: Recent insights from molecular simulations
,”
Curr. Opin. Struct. Biol.
22
,
187
(
2012
).
12.
J. E.
Hinshaw
, “
Dynamin and its role in membrane fission
,”
Annu. Rev. Cell Dev. Biol.
16
,
483
(
2000
).
13.
S. L.
Schmid
and
V. A.
Frolov
, “
Dynamin: Functional design of a membrane fission catalyst
,”
Annu. Rev. Cell Dev. Biol.
27
,
79
(
2011
).
14.
F.
Campelo
and
V.
Malhotra
, “
Membrane fission: The biogenesis of transport carriers
,”
Annu. Rev. Biochem.
81
,
407
(
2012
).
15.
S.
Morlot
and
A.
Roux
, “
Mechanics of dynamin-mediated membrane fission
,”
Annu. Rev. Biophys.
42
,
629
(
2013
).
16.
V. A.
Frolov
,
A.
Escalada
,
S. A.
Akimov
, and
A. V.
Shnyrova
, “
Geometry of membrane fission
,”
Chem. Phys. Lipids
185
,
129
(
2015
).
17.
B.
Antonny
,
C.
Burd
,
P. D.
Camilli
,
E.
Chen
,
O.
Daumke
,
K.
Faelber
,
M.
Ford
,
V. A.
Frolov
,
A.
Frost
,
J. E.
Hinshaw
,
T.
Kirchhausen
,
M. M.
Kozlov
,
M.
Lenz
,
H. H.
Low
,
H.
McMahon
,
C.
Merrifield
,
T. D.
Pollard
,
P. J.
Robinson
,
A.
Roux
, and
S.
Schmid
, “
Membrane fission by dynamin: What we know and what we need to know
,”
EMBO J.
35
,
2270
(
2016
).
18.
D.
Danino
and
J. E.
Hinshaw
, “
Dynamin family of mechanoenzymes
,”
Curr. Opin. Cell Biol.
13
,
454
(
2001
).
19.
S. M.
Ferguson
and
P.
De Camille
, “
Dynamin, a membrane-remodelling GTPase
,”
Nat. Rev. Mol. Cell Biol.
13
,
75
(
2012
).
20.
A. V.
Shnyrova
,
P. V.
Bashkirov
,
S. A.
Akimov
,
T. J.
Pucadyil
,
J.
Zimmerberg
,
S. L.
Schmid
, and
V. A.
Frolov
, “
Geometric catalysis of membrane fission driven by flexible dynamin rings
,”
Science
339
,
1433
(
2013
).
21.
T. F.
Reubold
,
K.
Faelber
,
N.
Plattner
,
Y.
Posor
,
K.
Ketel
,
U.
Curth
,
J.
Schlegel
,
R.
Anand
,
D. J.
Manstein
,
F.
Noe
,
V.
Haucke
,
O.
Daumke
, and
S.
Eschenburg
, “
Crystal structure of the dynamin tetramer
,”
Nature
525
,
404
(
2015
).
22.
A.
Roux
,
G.
Koster
,
M.
Lenz
,
B.
Sorre
,
J.-B.
Manneville
,
P.
Nassoy
, and
P.
Bassereau
, “
Membrane curvature controls dynamin polymerization
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
4141
(
2010
).
23.
J.
Zimmerberg
and
M. M.
Kozlov
, “
How proteins produce cellular membrane curvature
,”
Nat. Rev. Mol. Cell Biol.
7
,
9
(
2006
).
24.
S. M.
Sweitzer
and
J. E.
Hinshaw
, “
Dynamin undergoes a GTP-dependent conformational change causing vesiculation
,”
Cell
93
,
1021
(
1998
).
25.
Y.
Kozlovsky
and
M. M.
Kozlov
, “
Membrane fission: Model for intermediate structures
,”
Biophys. J.
85
,
85
(
2003
).
26.
M. M.
Kozlov
, “
Dynamin: Possible mechanism of ‘pinchase’ action
,”
Biophys. J.
77
,
604
(
1999
).
27.
M.
Lenz
,
S.
Morlot
, and
A.
Roux
, “
Mechanical requirements for membrane fission: Common facts from various examples
,”
FEBS Lett.
583
,
3839
(
2009
).
28.
S.
Morlot
,
M.
Lenz
,
J.
Prost
,
J. F.
Joanny
, and
A.
Roux
, “
Deformation of dynamin helices damped by membrane friction
,”
Biophys. J.
99
,
3580
(
2010
).
29.
B. A.
Camley
and
F. L. H.
Brown
, “
Beyond the creeping viscous flow limit for lipid bilayer membranes: Theory of single-particle microrheology, domain flicker spectroscopy, and long-time tails
,”
Phys. Rev. E
84
,
021904
(
2011
).
30.
D.
Raucher
and
M. P.
Sheetz
, “
Membrane expansion increases endocytosis rate during mitosis
,”
J. Cell Biol.
144
,
497
(
1999
).
31.
D.
Raucher
and
M. P.
Sheetz
, “
Cell spreading and lamellipodial extension rate is regulated by membrane tension
,”
J. Cell Biol.
148
,
127
(
2000
).
32.
K.
Keren
, “
Membrane tension leads the way
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
14379
(
2011
).
33.
N. C.
Gauthier
,
T. A.
Masters
, and
M. P.
Sheetz
, “
Mechanical feedback between membrane tension and dynamics
,”
Trends Cell Biol.
22
,
527
(
2012
).
34.
A.
Diz-Munzo
,
D. A.
Fletcher
, and
O. D.
Weiner
, “
Use the force: Membrane tension as an organizer of cell shape and motility
,”
Trend Cell Biol.
23
,
47
(
2013
).
35.
M. M.
Kozlov
and
L. V.
Chernomordik
, “
Membrane tension and membrane fusion
,”
Curr. Opin. Cell Biol.
33
,
61
(
2015
).
36.
A. R.
Houk
,
A.
Jilkine
,
C. O.
Mejean
,
R.
Boltyanskiy
,
E. R.
Dufresne
,
S. B.
Angenent
,
S. J.
Altschuler
,
L. F.
Wu
, and
O. D.
Weiner
, “
Membrane tension maintains cell polarity by confining signals to the leading edge during neutrophil migration
,”
Cell
148
,
175
(
2012
).
37.
B.
Sabass
and
H. A.
Stone
, “
Role of the membrane for mechanosensing by tethered channels
,”
Phys. Rev. Lett.
116
,
258101
(
2016
).
38.
P.
Sens
and
M. S.
Turner
, “
Budded membrane microdomains as tension regulators
,”
Phys. Rev. E
73
,
031918
(
2006
).
39.
M.
Müller
,
K.
Katsov
, and
M.
Schick
, “
A new mechanism of model membrane fusion determined from Monte Carlo simulation
,”
Biophys. J.
85
,
1611
(
2003
).
40.
J. C.
Shillcock
and
R.
Lipowsky
, “
Tension-induced fusion of bilayer membranes and vesicles
,”
Nat. Mater.
4
,
225
(
2005
).
41.
A.
Grafmüller
,
J.
Shillcock
, and
R.
Lipowsky
, “
Pathway of membrane fusion with two tension-dependent energy barriers
,”
Phys. Rev. Lett.
98
,
218101
(
2007
).
42.
M.
Müller
and
M.
Schick
, “
Structure and nucleation of pores in polymeric bilayers: A Monte Carlo simulation
,”
J. Chem. Phys.
105
,
8282
(
1996
).
43.
D. P.
Tieleman
,
H.
Leontiadou
,
A. E.
Mark
, and
S.-J.
Marrink
, “
Simulation of pore formation in lipid bilayers by mechanical stress and electric fields
,”
J. Am. Chem. Soc.
125
,
6382
(
2003
).
44.
H.
Leontiadou
,
A. E.
Mark
, and
S.-J.
Marrink
, “
Molecular dynamics simulations of hydrophilic pores in lipid bilayers
,”
Biophys. J.
86
,
2156
(
2004
).
45.
Z.-J.
Wang
and
D.
Frenkel
, “
Pore nucleation in mechanically stretched bilayer membranes
,”
J. Chem. Phys.
123
,
154701
(
2005
).
46.
M. A. S.
Karal
and
M.
Yamazaki
, “
Communication: Activation energy of tension-induced pore formation in lipid membranes
,”
J. Chem. Phys.
143
,
081103
(
2015
).
47.
C. L.
Ting
,
D.
Appelö
, and
Z.-G.
Wang
, “
Minimum energy path to membrane pore formation and rupture
,”
Phys. Rev. Lett.
106
,
168101
(
2011
).
48.
A.
Roux
,
K.
Uyhazi
,
A.
Frost
, and
P.
De Camilli
, “
GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission
,”
Nature
441
,
528
(
2006
).
49.
S.
Morlot
,
V.
Galli
,
M.
Klein
,
N.
Chiaruttini
,
J.
Manzi
,
F.
Humbert
,
L.
Dinis
,
M.
Lenz
,
G.
Cappello
, and
A.
Roux
, “
Membrane shape at the edge of the dynamin helix sets location and duration of the fission reaction
,”
Cell
151
,
619
(
2012
).
50.
J.-P.
Mattila
,
A. V.
Shnyrova
,
A. C.
Sundborger
,
E. R.
Hortelano
,
M.
Fuhrmans
,
S.
Neumann
,
M.
Müller
,
J. E.
Hinshaw
,
S. L.
Schmid
, and
V. A.
Frolov
, “
A hemi-fission intermediate links two mechanistically distinct stages of membrane fission
,”
Nature
524
,
109
(
2015
).
51.
M.
Fuhrmans
and
M.
Müller
, “
Coarse-grained simulation of dynamin-mediated fission
,”
Soft Matter
11
,
1464
(
2015
).
52.
P. V.
Bashkirov
,
S. A.
Akimov
,
A. I.
Evseev
,
S. L.
Schmid
,
J.
Zimmerberg
, and
V. A.
Frolov
, “
GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission
,”
Cell
135
,
1276
(
2008
).
53.
M.
Hömberg
and
M.
Müller
, “
Main phase transition in lipid bilayers: Phase coexistence and line tension in a soft, solvent-free, coarse-grained model
,”
J. Chem. Phys.
132
,
155104
(
2010
).
54.
I. A.
Barragan Vidal
,
C. M.
Rosetti
,
C.
Pastorino
, and
M.
Müller
, “
Measuring the composition-curvature coupling in binary lipid membranes by computer simulations
,”
J. Chem. Phys.
141
,
194902
(
2014
).
55.
M.
Fuhrmans
and
M.
Müller
, “
Mechanisms of vesicle spreading on surfaces: Coarse-grained simulations
,”
Langmuir
29
,
4335
(
2013
).
56.
K. Ch.
Daoulas
and
M.
Müller
, “
Comparison of simulations of lipid membranes with membranes of block copolymers
,”
Adv. Polym. Sci.
224
,
43
(
2010
).
57.
I.
Pagonabarraga
and
D.
Frenkel
, “
Dissipative particle dynamics for interacting systems
,”
J. Chem. Phys.
115
,
5015
(
2001
).
58.
S. Y.
Trofimov
,
E. L. F.
Nies
, and
M. A. J.
Michels
, “
Thermodynamic consistency in dissipative particle dynamics simulations of strongly nonideal liquids and liquid mixtures
,”
J. Chem. Phys.
117
,
9383
(
2002
).
59.
P.
Kindt
and
W. J.
Briels
, “
A single particle model to simulate the dynamics of entangled polymer melts
,”
J. Chem. Phys.
127
,
134901
(
2007
).
60.
T.
Sanyal
and
M. S.
Shell
, “
Coarse-grained models using local-density potentials optimized with the relative entropy: Application to implicit solvation
,”
J. Chem. Phys.
145
,
034109
(
2016
).
61.
K.
Katsov
and
J. D.
Weeks
, “
On the mean field treatment of attractive interactions in nonuniform simple fluids
,”
J. Phys. Chem. B
105
,
6738
(
2001
).
62.
J. F.
Nagle
,
R.
Zhang
,
S.
Tristram-Nagle
,
W.
Sun
,
H. I.
Petrache
, and
R. M.
Suter
, “
X-ray structure determination of fully hydrated Lα phase dipalmitoylphosphatidylcholine bilayers
,”
Biophys. J.
70
,
1419
(
1996
).
63.
H. I.
Petrache
,
S. W.
Dodd
, and
M. F.
Brown
, “
Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by H-2 NMR spectroscopy
,”
Biophys. J.
79
,
3172
(
2000
).
64.
T.
Tanaka
,
R.
Sano
,
Y.
Yamashita
, and
M.
Yamazaki
, “
Shape changes and vesicle fission of giant unilamellar vesicles of liquid-ordered phase membrane induced by iysophosphatidylcholine
,”
Langmuir
20
,
9526
(
2004
).
65.
Y.
Inaoka
and
M.
Yamazaki
, “
Vesicle fission of giant unilamellar vesicles of liquid-ordered-phase membranes induced by amphiphiles with a single long hydrocarbon chain
,”
Langmuir
23
,
720
(
2007
).
66.
H. B.
Callen
,
Thermodynamics and An Introduction to Thermostatistics
, 2nd ed. (
Wiley
,
1985
).
67.
H.-J.
Butt
,
K.
Graf
, and
M.
Kappl
,
Physics and Chemistry of Interfaces
(
Wiley
,
2003
).
68.
W.
Rawicz
,
K. C.
Olbrich
,
T.
McIntosh
,
D.
Needham
, and
E.
Evans
, “
Effect of chain length and unsaturation on elasticity of lipid bilayers
,”
Biophys. J.
79
,
328
(
2000
).
69.
T.
Itoh
,
K. S.
Erdmann
,
A.
Roux
,
B.
Habermann
,
H.
Werner
, and
P.
De Camilli
, “
Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins
,”
Dev. Cell
9
,
791
(
2005
).
70.
B.
Smit
, “
Grand-canonical Monte-Carlo simulations of chain molecules: Adsorption-isotherms of alkanes in zeolites
,”
Mol. Phys.
85
,
153
(
1995
).
71.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
, 2nd ed. (
Academic Press
,
2002
).
72.
Ch. Chipot
and
A.
Pohorille
,
Free Energy Calculation: Theory and Applications in Chemistry and Biology
(
Springer
,
2006
).
73.
J.
Kästner
, “
Umbrella sampling
,”
WIREs Comput. Mol. Sci.
1
,
932
(
2011
).
74.
A.
Barducci
,
M.
Bonomi
, and
M.
Parrinello
, “
Metadynamics
,”
WIREs Comput. Mol. Sci.
1
,
826
(
2011
).
75.
F.
Wang
and
D. P.
Landau
, “
Efficient, multiple-range random walk algorithm to calculate the density of state
,”
Phys. Rev. Lett.
86
,
2050
(
2001
).
76.
B. J.
Schulz
,
K.
Binder
,
M.
Müller
, and
D. P.
Landau
, “
Avoiding boundary effects in Wang-Landau sampling
,”
Phys. Rev. E
67
,
067102
(
2003
).
77.
P.
Hänggi
,
P.
Talkner
, and
M.
Borkovec
, “
Reaction-rate theory: Fifty years after Kramers
,”
Rev. Mod. Phys.
62
,
251
(
1990
).
78.
W.
E
,
W.
Ren
, and
E.
Vanden-Eijnden
, “
Simplified and improved string method for computing the minimum energy paths in barrier-crossing events
,”
J. Chem. Phys.
126
,
164103
(
2007
).
79.
G.
Hummer
, “
From transition paths to transition states and rate coefficients
,”
J. Chem. Phys.
120
,
516
(
2004
).
80.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
, 2nd ed. (
Oxford University Press
,
2017
).
81.
V. A.
Harmandaris
and
M.
Deserno
, “
A novel method for measuring the bending rigidity of model lipid membranes by simulating tethers
,”
J. Chem. Phys.
125
,
204905
(
2006
).
82.
A.
Anishkin
,
S. H.
Loukin
,
J.
Teng
, and
C.
Kung
, “
Feeling the hidden mechanical forces in lipid bilayer is an original sense
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
7898
(
2014
).
83.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
, 3rd ed. (
Garland Science
,
2011
).
84.
M. A. S.
Karal
,
V.
Levadnyy
,
T.
Tsuboi
,
M.
Belaya
, and
M.
Yamazaki
, “
Electrostatic interaction effects on tension-induced pore formation in lipid membranes
,”
Phys. Rev. E
92
,
012708
(
2015
).
You do not currently have access to this content.