Understanding the retention of hydrogen isotopes in liquid metals, such as lithium and tin, is of great importance in designing a liquid plasma-facing component in fusion reactors. However, experimental diffusivity data of hydrogen isotopes in liquid metals are still limited or controversial. We employ first-principles molecular dynamics simulations to predict diffusion coefficients of deuterium in liquid tin at temperatures ranging from 573 to 1673 K. Our simulations indicate faster diffusion of deuterium in liquid tin than the self-diffusivity of tin. In addition, we find that the structural and dynamic properties of tin are insensitive to the inserted deuterium at temperatures and concentrations considered. We also observe that tin and deuterium do not form stable solid compounds. These predicted results from simulations enable us to have a better understanding of the retention of hydrogen isotopes in liquid tin.

1.
B.
Lipschultz
,
J.
Coenen
,
H.
Barnard
,
N.
Howard
,
M.
Reinke
,
D.
Whyte
, and
G.
Wright
,
Nucl. Fusion
52
,
123002
(
2012
).
2.
R.
Pitts
,
S.
Carpentier
,
F.
Escourbiac
,
T.
Hirai
,
V.
Komarov
,
S.
Lisgo
,
A.
Kukushkin
,
A.
Loarte
,
M.
Merola
,
A. S.
Naik
 et al,
J. Nucl. Mater.
438
,
S48
(
2013
).
3.
G.
van Eden
,
T.
Morgan
,
H.
van der Meiden
,
J.
Matejicek
,
T.
Chraska
,
M.
Wirtz
, and
G.
De Temmerman
,
Nucl. Fusion
54
,
123010
(
2014
).
4.
J.
Coenen
,
G.
De Temmerman
,
G.
Federici
,
V.
Philipps
,
G.
Sergienko
,
G.
Strohmayer
,
A.
Terra
,
B.
Unterberg
,
T.
Wegener
, and
D.
Van den Bekerom
,
Phys. Scr.
T159
,
014037
(
2014
).
5.
R.
Kaita
,
R.
Majeski
, and
T.
Gray
,
Phys. Plasmas
14
,
056111
(
2007
).
6.
G.
Mazzitelli
,
M.
Apicella
,
V. P.
Ridolfini
,
G.
Apruzzese
,
R.
De Angelis
,
D.
Frigione
,
E.
Giovannozzi
,
L.
Gabellieri
,
G.
Granucci
,
C.
Mazzotta
 et al,
Fusion Eng. Des.
85
,
896
(
2010
).
7.
R.
Majeski
,
T.
Abrams
, and
D.
Boyle
,
Phys. Plasmas
20
,
056103
(
2013
).
8.
P.
Fiflis
,
A.
Press
,
W.
Xu
,
D.
Andruczyk
,
D.
Curreli
, and
D.
Ruzic
,
Fusion Eng. Des.
89
,
2827
(
2014
).
9.
K.
Tritz
,
R. E.
Bell
, and
P.
Beiersdorfer
,
Plasma Phys. Controlled Fusion
56
,
125014
(
2014
).
10.
J. C.
Schmitt
,
R. E.
Bell
, and
D. P.
Boyle
,
Phys. Plasmas
22
,
056112
(
2015
).
11.
T.
Abrams
,
M.
Jaworski
,
R.
Kaita
,
J.
Nichols
,
D.
Stotler
,
G.
De Temmerman
,
M.
van den Berg
,
H.
van der Meiden
, and
T.
Morgan
,
J. Nucl. Mater.
463
,
1169
(
2015
).
12.
T.
Abrams
,
M.
Jaworski
,
M.
Chen
,
E.
Carter
,
R.
Kaita
,
D.
Stotler
,
G. D.
Temmerman
,
T.
Morgan
,
M.
van den Berg
, and
H.
van der Meiden
,
Nucl. Fusion
56
,
016022
(
2016
).
13.
T. W.
Morgan
,
D. C. M.
van den Bekerom
, and
G.
De Temmerman
,
J. Nucl. Mater.
463
,
1256
(
2015
).
14.
G.
van Eden
,
T.
Morgan
,
D.
Aussems
,
M.
van den Berg
,
K.
Bystrov
, and
M.
van de Sanden
,
Phys. Rev. Lett.
116
,
135002
(
2016
).
15.
M.
Chen
,
T.
Abrams
, and
M. A.
Jaworski
,
Nucl. Fusion
56
,
016020
(
2016
).
16.
S.
Weir
,
M.
Lipp
,
S.
Falabella
,
G.
Samudrala
, and
Y.
Vohra
,
J. Appl. Phys.
111
,
123529
(
2012
).
17.
R.
Boehler
,
Phys. Rev. B
27
,
6754
(
1983
).
18.
J. N.
Brooks
,
Fusion Eng. Des.
60
,
515
(
2002
).
19.
M.
Coventry
,
J.
Allain
, and
D.
Ruzic
,
J. Nucl. Mater.
313–316
,
636
(
2003
).
20.
M.
Coventry
,
J.
Allain
, and
D.
Ruzic
,
J. Nucl. Mater.
335
,
115
(
2004
).
21.
J.
Loureiro
,
H.
Fernandes
,
F.
Tabarés
,
G.
Mazzitelli
,
C.
Silva
,
R.
Gomes
,
E.
Alves
,
R.
Mateus
,
T.
Pereira
,
H.
Figueiredo
 et al,
Nucl. Mater. Energy
(published online,
2016
).
22.
R. A.
Causey
,
J. Nucl. Mater.
300
,
91
(
2002
).
23.
H.
Moriyama
,
K.
Iwasaki
, and
Y.
Ito
,
J. Nucl. Mater.
191–194
,
190
(
1992
).
24.
S.
Fukada
,
M.
Kinoshita
,
K.
Kuroki
, and
T.
Muroga
,
J. Nucl. Mater.
346
,
293
(
2005
).
25.
M.
Chen
,
L.
Hung
, and
C.
Huang
,
Mol. Phys.
111
,
3448
(
2013
).
26.
J. R.
Vella
,
F. H.
Stillinger
,
A. Z.
Panagiotopoulos
, and
P. G.
Debenedetti
,
J. Phys. Chem. B
119
,
8960
(
2014
).
27.
M.
Chen
,
J. R.
Vella
,
A. Z.
Panagiotopoulos
,
P. G.
Debenedetti
,
F. H.
Stillinger
, and
E. A.
Carter
,
AIChE J.
61
,
2841
(
2015
).
28.
M.
Chen
,
J.
Roszell
,
E. V.
Scoullos
,
C.
Riplinger
,
B. E.
Koel
, and
E. A.
Carter
,
J. Phys. Chem. B
120
,
6110
(
2016
).
29.
J. R.
Vella
,
M.
Chen
,
F. H.
Stillinger
,
E. A.
Carter
,
P. G.
Debenedetti
, and
A. Z.
Panagiotopoulos
,
Phys. Rev. B
95
,
064202
(
2017
).
30.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
31.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
32.
A.
Aguado
,
Phys. Rev. B
67
,
212104
(
2003
).
33.
T.
Itami
,
S.
Munejiri
, and
T.
Masaki
,
Phys. Rev. B
67
,
064201
(
2003
).
34.
L.
Calderín
,
D. J.
González
,
L. E.
González
, and
J. M.
López
,
J. Chem. Phys.
129
,
194506
(
2008
).
35.
P.
Li
,
X.
Liu
,
M.
Chen
,
P.
Lin
,
X.
Ren
,
L.
Lin
,
C.
Yang
, and
L.
He
,
Comput. Mater. Sci.
112
,
503
(
2016
).
36.
M.
Chen
,
G.-C.
Guo
, and
L.
He
,
J. Phys.: Condens. Matter
22
,
445501
(
2010
).
37.
M.
Chen
,
G.-C.
Guo
, and
L.
He
,
J. Phys.: Condens. Matter
23
,
325501
(
2011
).
38.
P.
Giannozzi
,
S.
Baroni
, and
N.
Bonini
,
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
39.
D. M.
Ceperley
and
B. J.
Alder
,
Phys. Rev. Lett.
45
,
566
(
1980
).
40.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
41.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
42.
F.
Murnaghan
,
Proc. Natl. Acad. Sci. U. S. A.
30
,
244
(
1944
).
43.
S.
Nosé
,
J. Chem. Phys.
81
,
511
(
1984
).
44.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
45.
I.-C.
Yeh
and
G.
Hummer
,
J. Phys. Chem. B
108
,
15873
(
2004
).
46.
P.
Nasch
and
S.
Steinemann
,
Phys. Chem. Liq.
29
,
43
(
1995
).
47.
D.
Marrocchelli
,
M.
Salanne
, and
P. A.
Madden
,
J. Phys.: Condens. Matter
22
,
152102
(
2010
).
48.
M.
Haughney
,
M.
Ferrario
, and
I. R.
McDonald
,
J. Phys. Chem.
91
,
4934
(
1987
).
49.
C. S.
Barrett
and
T. B.
Massalski
,
Structure of Metals
(
McGraw-Hill
,
New York
,
1966
).
50.
J. A.
Rayne
and
B. S.
Chandrasekhar
,
Phys. Rev.
120
,
1658
(
1960
).
51.
Smithells Metals Reference Book
, 6th ed., edited by
E. A.
Brandes
(
Butterworths
,
London
,
1983
).
52.
S. N.
Vaidya
and
G. C.
Kennedy
,
J. Phys. Chem. Solids
31
,
2329
(
1970
).
53.
C. J.
Buchenauer
,
M.
Cardona
, and
F. H.
Pollack
,
Phys. Rev. B
3
,
1243
(
1971
).
54.
O. L.
Cohen
and
A. K. W. A.
van Lieshout
,
Z. Phys. Chem. A
173
,
32
(
1935
).
55.
H.
Olijnyk
and
W. B.
Holzapfel
,
J. Phys. Colloq.
45
,
C8-157
(
1984
).
56.
S.
Desgreniers
,
Y. K.
Vohra
, and
A. L.
Ruoff
,
Phys. Rev. B
39
,
10359
(
1989
).
57.
G.
Careri
,
A.
Paoletti
, and
M.
Vicentini
,
Il Nuovo Cimento
10
,
1088
(
1958
).
58.
A.
Bruson
and
M.
Gerl
,
Phys. Rev. B
21
,
5447
(
1980
).
59.
G.
Frohberg
,
K. H.
Kraatz
, and
H.
Weber
, in
Proceedings of the 6th European Symposium on Materials Sciences under Microgravity Conditions, Bordeaux, France (ESA SP-256)
(Springer, Berlin,
1986
), p.
585
.
60.
R. L.
DeKock
and
H. B.
Gray
,
Chemical Structure and Bonding
(
University Science Books
,
1989
).
61.
N.
Blagoveshchenskii
,
A.
Novikov
, and
V.
Savostin
,
Phys. B
407
,
4567
(
2012
).
62.
C. E.
Messer
and
I. S.
Levy
,
Inorg. Chem.
4
,
543
(
1965
).
You do not currently have access to this content.