We study the compression and extension dynamics of a DNA-like polymer interacting with non-DNA binding and DNA-binding proteins, by means of computer simulations. The geometry we consider is inspired by recent experiments probing the compressional elasticity of the bacterial nucleoid (DNA plus associated proteins), where DNA is confined into a cylindrical container and subjected to the action of a “piston”—a spherical bead to which an external force is applied. We quantify the effect of steric interactions (excluded volume) on the force-extension curves as the polymer is compressed. We find that non-DNA-binding proteins, even at low densities, exert an osmotic force which can be a lot larger than the entropic force exerted by the compressed DNA. The trends we observe are qualitatively robust with respect to changes in protein sizes and are similar for neutral and charged proteins (and DNA). We also quantify the dynamics of DNA expansion following removal of the “piston”: while the expansion is well fitted by power laws, the apparent exponent depends on protein concentration and protein-DNA interaction in a significant way. We further highlight an interesting kinetic process which we observe during the expansion of DNA interacting with DNA-binding proteins when the interaction strength is intermediate: the proteins bind while the DNA is packaged by the compression force, but they “pop-off” one-by-one as the force is removed, leading to a slow unzipping kinetics. Finally, we quantify the importance of supercoiling, which is an important feature of bacterial DNA in vivo.

1.
B.
Alberts
,
A.
Johnson
,
J.
Lewis
,
M.
Raff
,
K.
Roberts
, and
P.
Walter
,
Molecular Biology of the Cell
(
Garland Science
,
New York
,
2002
).
2.
D.
Marenduzzo
,
E.
Orlandini
, and
C.
Micheletti
,
J. Phys.: Condens. Matter
22
,
283102
(
2010
).
3.
M.
Doi
and
S. F.
Edward
,
The Theory of Polymer Dynamics
(
Oxford University Press
,
New York
,
1986
).
4.
M.
Joyeux
,
J. Phys.: Condens. Matter
27
,
383001
(
2015
).
5.
R.
de Vries
,
Polym. Sci., Ser. C
54
,
30
(
2012
).
6.
D. F.
Browning
,
D. C.
Grainger
, and
S. J. W.
Busby
,
Curr. Opin. Microbiol.
13
,
773
(
2010
).
7.
D.
Song
and
J. J.
Loparo
,
Trends Genet.
31
,
164
(
2015
).
8.
A. D.
Bates
and
A.
Maxwell
,
DNA Topology
(
Oxford University Press
,
New York
,
2005
).
9.
S.
Jun
and
A.
Wright
,
Nat. Rev. Microbiol.
8
,
600
(
2010
).
10.
J.
Pelletier
,
K.
Halvorsen
,
B.-Y.
Ha
,
R.
Paparcone
,
S. J.
Sandler
,
C. L.
Woldringh
,
W. P.
Wong
, and
S.
Jun
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
E2649
(
2012
).
11.
S.
Jun
and
B.
Mulder
,
Proc. Natl. Acad. Sci. U. S. A.
103
,
12388
(
2006
).
12.
S.
Jun
,
D.
Thirumalai
, and
B.-Y.
Ha
,
Phys. Rev. Lett.
101
,
138101
(
2008
).
13.
Y.
Jung
,
C.
Jeon
,
J.
Kim
,
H.
Jeong
,
S.
Jun
, and
B.-Y.
Ha
,
Soft Matter
8
,
2095
(
2012
).
14.
I.
Junier
,
F.
Boccard
, and
O.
Espéli
,
Nucleic Acids Res.
42
,
1461
(
2014
).
15.
T. B. K.
Le
,
M. V.
Imakaev
,
L. A.
Mirny
, and
M. T.
Laub
,
Science
342
,
731
(
2013
).
16.
V. G.
Benza
,
B.
Bassetti
,
K. D.
Dorfman
,
V. F.
Scolari
,
K.
Bromek
,
P.
Cicuta
, and
M. C.
Lagomarsino
,
Rep. Prog. Phys.
75
,
076602
(
2012
).
17.
V. F.
Scolari
and
M. C.
Lagomarsino
,
Soft Matter
11
,
1677
(
2015
).
18.
Y.
Jung
,
C.
Jeon
,
M.
Ha
, and
B.-Y.
Ha
,
Europhys. Lett.
104
,
68003
(
2013
).
19.
J.
Kim
,
C.
Jeon
,
H.
Jeong
,
Y.
Jung
, and
B.-Y.
Ha
,
Soft Matter
11
,
1877
(
2015
).
20.
T. N.
Shendruk
,
M.
Bertrand
,
H. W.
de Haan
,
J. L.
Harden
, and
G. W.
Slater
,
Biophys. J.
108
,
810
(
2015
).
21.
A. S.
Wegner
,
K.
Wintraecken
,
R.
Spurio
,
C. L.
Woldringh
,
R.
de Vries
, and
T.
Odijk
,
J. Struct. Biol.
194
,
129
(
2016
).
22.
C. A.
Brackley
,
S.
Taylor
,
A.
Papantonis
,
P. R.
Cook
, and
D.
Marenduzzo
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
E3605
(
2013
).
23.
G. L.
Treut
,
F.
Kepes
, and
H.
Orland
,
Biophys. J.
110
,
51
(
2016
).
24.
C. A.
Brackley
,
A. N.
Morozov
, and
D.
Marenduzzo
,
J. Chem. Phys.
140
,
135103
(
2014
).
25.
R.
Phillips
,
J.
Kondev
,
J.
Theriot
, and
H.
Garcia
,
Physical Biology of the Cell
(
Garland Science
,
New York
,
2013
).
26.
T.
Ando
and
J.
Skolnick
,
Proc. Natl. Acad. Sci. U. S. A.
107
,
18457
(
2010
).
27.
C. A.
Brackley
,
J.
Allan
,
D.
Keszenman-Pereyra
, and
D.
Marenduzzo
,
Nucleic Acids Res.
43
,
63
(
2015
).
28.
F.
Brochard
and
P. G.
de Gennes
,
J. Chem. Phys.
67
,
52
(
1977
).
29.
A.
Khorshid
,
P.
Zimny
,
D. T.-L.
Roche
,
G.
Massarelli
,
T.
Sakaue
, and
W.
Reisner
,
Phys. Rev. Lett.
113
,
268104
(
2014
).
30.
A.
Khorshid
,
S.
Amin
,
Z.
Zhang
,
T.
Sakaue
, and
W. W.
Reisner
,
Macromolecules
49
,
1933
(
2016
).
31.
N. M.
Toan
,
D.
Marenduzzo
,
P. R.
Cook
, and
C.
Micheletti
,
Phys. Rev. Lett.
97
,
178302
(
2006
).
32.
R. T.
Dame
,
M. C.
Noom
, and
G. J. L.
Wuite
,
Nature
444
,
387
(
2006
).
33.
S. G.
Wolf
,
D.
Frenkiel
,
T.
Arad
,
S.
Finkel
,
R.
Kolter
, and
A.
Minsky
,
Nature
400
,
83
(
1999
).
34.
C. A.
Brackley
,
J.
Johnson
,
S.
Kelly
,
P. R.
Cook
, and
D.
Marenduzzo
,
Nucleic Acids Res.
44
,
3503
(
2016
).
35.
R.
Metzler
,
Y.
Kantor
, and
M.
Kardar
,
Phys Rev E
66
,
022102
(
2002
).
36.
R.
Metzler
,
A.
Hanke
,
P. G.
Dommersnes
,
Y.
Kantor
, and
M.
Kardar
,
Phys. Rev. Lett.
65
,
061103
(
2002
).
37.
Note that these results correspond to proteins which bind non-specifically to DNA. It would be of interest to ask what the effect of specific binding, which is known to promote the formation of clusters with a well-defined size.34 
38.
In a real bacterial DNA, proteins like H-NS would not bind the whole genome, so the 3D structure would likely be different upon compression; however, we expect similar dynamics to occur there as well.
39.
We note that the considered value corresponds to the effective twisting rigidity and not the intrinsic one (110 nm41,46,47). This is because there is a coupling between twisting and bending40 arising from the groove asymmetry in the DNA base-pairs,41 i.e., the polymer can relax and convert extra twist into bending. This leads to an effective softer polymer upon twisting. Our coarse grained model does not explicitly consider this coupling, but, since here the DNA is not under tension, a realistic twisting rigidity can still be achieved by using the effective rigidity value.
40.
S. K.
Nomidis
,
F.
Kriegel
,
W.
Vanderlinden
,
J.
Lipfert
, and
E.
Carlon
,
Phys. Rev. Lett.
118
,
217801
(
2017
).
41.
E.
Skoruppa
,
M.
Laleman
,
S. K.
Nomidis
, and
E.
Carlon
,
J. Chem. Phys.
146
,
214902
(
2017
).
42.
J. D.
Dwyer
and
V. A.
Bloomfield
,
Biophys. Chem.
57
,
55
(
1995
).
43.
K. K.
Kunze
and
R. R.
Netz
,
Phys. Rev. Lett.
85
,
4389
(
2000
).
44.
C.
Forrey
and
M.
Muthukumar
,
Biophys. J.
91
,
25
(
2006
).
45.
K.
Runcong
and
S.
Mitaku
,
Genome Inf.
12
,
364
(
2001
).
46.
J. D.
Moroz
and
P.
Nelson
,
Proc. Natl. Acad. Sci. U. S. A.
94
,
14418
(
1997
).
47.
J.
Lipfert
,
J. W. J.
Kerssemakers
,
T.
Jager
, and
N. H.
Dekker
,
Nat. Methods
7
,
977
(
2010
).
You do not currently have access to this content.