Using molecular dynamics, we evaluate the potential of mean force for two models of hybrid nanoparticles, namely, for the models with fixed and movable chain ligands. We also investigate the structure of segments of chains around nanoparticles and its change when one nanoparticle approaches the other. In the case of an isolated particle, we also employ a density functional theory to compute the segment density profiles. Moreover, to determine the structure of segments around a core, we have employed the concept of the so-called mass dipoles.

1.
Handbook of Nanoparticles
, edited by
M.
Aliofkhazraei
(
Springer International Publishing AG
,
Switzerland
,
2016
).
2.
S.
Bhatia
,
Natural Polymer Drug Delivery Systems: Nanoparticles, Plants, and Algae
(
Springer International Publishing
,
Switzerland
,
2016
).
3.
D. N.
Theodorou
and
U. W.
Suter
, “
Shape of unperturbed linear polymers: Polypropylene
,”
Macromolecules
18
,
1206
1214
(
1985
).
4.
P.
Akcora
,
H.
Liu
,
S. K.
Kumar
,
J.
Moll
,
Y.
Li
,
C.
Benicewicz
,
L. S.
Schadler
,
D.
Acehan
,
A. Z.
Panagiotopoulos
,
V.
Prymatsyn
,
V.
Ganesan
,
J.
Ilavsky
,
P.
Thiyagarajan
,
R. H.
Colby
, and
J. F.
Douglas
, “
Anisotropic self-assembly of spherical polymer-grafted nanoparticles
,”
Nat. Mater.
8
,
354
358
(
2009
).
5.
M. K.
Corbierre
,
N. S.
Cameron
,
M.
Sutton
,
K.
Laaziri
, and
R. B.
Lennox
, “
Gold nanoparticle/polymer nanocomposites: Dispersion of nanoparticles as a function of capping agent molecular weight and grafting density
,”
Langmuir
21
,
6063
6072
(
2005
).
6.
N.
Nair
and
A.
Jayaraman
, “
Self-consistent PRISM theory-Monte Carlo simulation studies of copolymer grafted nanoparticles in a homopolymer matrix
,”
Macromolecules
43
,
8251
8263
(
2010
).
7.
S.
Ma
,
Y.
Hu
, and
R.
Wang
, “
Amphiphilic block copolymer aided design of hybrid assemblies of nanoparticles: Nanowire, nanoring, and nanocluster
,”
Macromolecules
49
,
3535
3541
(
2016
).
8.
J. D.
Haley
,
C. R.
Iacovella
,
P. T.
Cummings
, and
C.
McCabe
, “
Examining the aggregation behavior of polymer grafted nanoparticles using molecular simulation and theory
,”
J. Chem. Phys.
143
,
054904
(
2015
).
9.
Y.-H.
Xue
,
W.
Quan
,
F.-H.
Qu
, and
H.
Liu
, “
Conformation of polydispersed chains grafted on nanoparticles
,”
Mol. Simul.
41
,
298
310
(
2015
).
10.
E.
Bianchi
,
B.
Capone
,
G.
Kahl
, and
C. N.
Likos
, “
Soft-patchy nanoparticles: Modeling and self-organization
,”
Faraday Discuss.
181
,
123
138
(
2015
).
11.
I. C.
Gârlea
,
E.
Bianchi
,
B.
Capone
,
L.
Rovigatti
, and
C. N.
Likos
, “
Hierarchical self-organization of soft patchy nanoparticles into morphologically diverse aggregates
,”
Curr. Opin. Colloid Interface Sci.
30
,
1
(
2017
).
12.
Self-Assembling Systems: Theory and Simulation
, edited by
L.-T.
Yan
(
John Wiley & Sons, Ltd.
,
Chichester, UK
,
2017
), ISBN: 978-1-119-11314-0.
13.
K. H.
Ku
,
Y. J.
Kim
,
G.-R.
Yi
,
Y. S.
Jung
, and
B. J.
Kim
, “
Soft patchy particles of block copolymers from interface-engineered emulsions
,”
ACS Nano
9
,
11333
11341
(
2015
).
14.
M. S.
Nikolic
,
C.
Olsson
,
A.
Salcher
,
A.
Kornowski
,
A.
Rank
,
R.
Schubert
,
A.
Froemsdorf
,
H.
Weller
, and
S.
Foerster
, “
Micelle and vesicle formation of amphiphilic nanoparticles
, ”
Angew. Chem., Int. Ed.
48
,
2752
2754
(
2009
).
15.
L.
Carbone
,
L.
Manna
, and
C.
Soennichsen
, “
Self-assembly of amphiphilic nanocrystals
,”
Angew. Chem., Int. Ed.
48
,
4282
4288
(
2009
).
16.
S. A. J.
van der Meulen
and
M. E.
Leunissen
, “
Solid colloids with surface-mobile DNA linkers
,”
J. Am. Chem. Soc.
135
,
15129
15134
(
2013
).
17.
S. A. J.
van der Meulen
,
G.
Helms
, and
M.
Dogterom
, “
Solid colloids with surface-mobile linkers
,”
J. Phys.: Condens. Matter
27
,
233101
(
2015
).
18.
W. B.
Rogers
,
W. M.
Shih
, and
V. N.
Manoharan
, “
Using DNA to program the self- assembly of colloidal nanoparticles and microparticles
,”
Nat. Rev. Mater.
1
,
16008
(
2016
).
19.
H. J. C.
Berendsen
,
D.
Vanderspoel
, and
R.
Vandrunen
, “
GROMACS—A message-passing parallel molecular- dynamics implementation
,”
Comput. Phys. Commun.
91
,
43
56
(
1995
).
20.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular-dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
21.
V.
Ganesan
and
A.
Jayaraman
, “
Theory and simulation studies of effective interactions, phase behavior and morphology in polymer nanocomposites
,”
Soft Matter
10
,
13
38
(
2014
).
22.
S.
Minko
, “
Responsive polymer brushes
,”
J. Macromol. Sci., Polym. Rev.
46
,
397
420
(
2006
).
23.
K. S.
Kumar
,
V. B.
Kumar
, and
P.
Paik
, “
Recent advancement in functional core-shell nanoparticles of Polymers: Synthesis, physical properties, and applications in medical biotechnology
,”
J. Nanopart.
2013
,
672059
.
24.
P. F.
Green
, “
The structure of chain end-grafted nanoparticle/homopolymer nanocomposites
,”
Soft Matter
7
,
7914
7926
(
2011
).
25.
J.
Kalb
,
D.
Dukes
,
S. K.
Kumar
,
R. S.
Hoy
, and
G. S.
Grest
, “
End grafted polymer nanoparticles in a polymeric matrix: Effect of coverage and curvature
,”
Soft Matter
7
,
1418
1425
(
2011
).
26.
F.
LoVerso
,
S. A.
Egorov
, and
K.
Binder
, “
Interaction between polymer brush-coated spherical nanoparticles: Effect of solvent quality
,”
Macromolecules
45
,
8892
8902
(
2012
).
27.
F.
Lo Verso
,
S. A.
Egorov
,
A.
Milchev
, and
K.
Binder
, “
Spherical polymer brushes under good solvent conditions: Molecular dynamics results compared to density functional theory
,”
J. Chem. Phys.
133
,
184901
(
2010
).
28.
F.
Lo Verso
,
L.
Yelash
,
S. A.
Egorov
, and
K.
Binder
, “
Interactions between polymer brush-coated spherical nanoparticles: The good solvent case
,”
J. Chem. Phys.
135
,
214902
(
2011
).
29.
T.
Lafitte
,
S. K.
Kumar
, and
A. Z.
Panagiotopoulos
, “
Self-assembly of polymer-grafted nanoparticles in thin films
,”
Soft Matter
10
,
786
794
(
2014
).
30.
M.
Borówko
,
W.
Rżysko
,
S.
Sokołowski
, and
T.
Staszewski
, “
Phase behavior of decorated soft disks in two dimensions
,”
J. Chem. Phys.
145
,
224703
(
2016
).
31.
H.
Chen
and
E.
Ruckenstein
, “
Micellar structures in nanoparticle-multiblock copolymer complexes
,”
Langmuir
30
,
3723
3728
(
2014
).
32.
S. B.
Jabes
,
H. O. S.
Yadav
,
S. K.
Kumar
, and
C.
Chakravarty
, “
Fluctuation-driven anisotropy in effective pair interactions between nanoparticles: Thiolated gold nanoparticles in ethane
,”
J. Chem. Phys.
141
,
154904
(
2014
).
33.
Ł.
Baran
and
S.
Sokołowski
, “
A comparison of molecular dynamics results for two models of nanoparticles with fixed and mobile ligands in two-dimensions
,”
Appl. Surf. Sci.
396
,
1343
1351
(
2017
).
34.
Y.-X.
Yu
and
J.
Wu
, “
Density functional theory for inhomogeneous mixtures of polymeric fluids
,”
J. Chem. Phys.
117
,
2368
2376
(
2002
).
35.
M.
Borówko
,
W.
Rżysko
,
S.
Sokołowski
, and
T.
Staszewski
, “
Density functional approach to the adsorption of spherical molecules on a surface modified with attached short chains
,”
J. Chem. Phys.
126
,
214703
(
2007
).
36.
M.
Borówko
,
W.
Rżysko
,
S.
Sokołowski
, and
T.
Staszewski
, “
Density functional approach to adsorption and retention of spherical molecules on surfaces modified with end-grafted polymers
,”
J. Phys. Chem. B
113
,
4763
4770
(
2009
).
37.
See http://lammps.sandia.gov for the description of the LAMMPS simulation package.
38.
Y.
Rosenfeld
, “
Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing
,”
Phys. Rev. Lett.
63
,
980
983
(
1989
).
39.
R.
Roth
,
R.
Evans
,
A.
Lang
, and
G.
Kahl
, “
Fundamental measure theory for hard-sphere mixtures revisited: The white bear version
,”
J. Phys.: Condens. Matter
14
,
12063
12078
(
2002
).
40.
D. P.
Cao
and
J. Z.
Wu
, “
Density functional theory for semiflexible and cyclic polyatomic fluids
,”
J. Chem. Phys.
121
,
4210
4220
(
2004
).
41.
M.
Frigo
and
S. G.
Johnson
, “
The design and implementation of FFTW3
,”
Proc. IEEE
93
,
216
231
(
2005
), http://www.fftw.org/.
42.
J. A.
Barker
and
D.
Henderson
, “
What is ‘liquid’? Understanding the states of matter
,”
Rev. Mod. Phys.
48
,
587
672
(
1976
).
43.
C. P.
Royall
,
W. C. K.
Poon
, and
E. R.
Weeks
, “
In search of colloidal hard spheres
,”
Soft Matter
9
,
17
27
(
2013
).
44.
A.
Barros de Oliveira
,
P. A.
Netz
,
T.
Colla
, and
M. C.
Barbosa
, “
Structural anomalies for a three dimensional isotropic core-softened potential
,”
J. Chem. Phys.
25
,
124503
(
2006
).
45.
O.
Pizio
,
H.
Dominguez
,
Y.
Duda
, and
S.
Sokołowski
, “
Microscopic structure and thermodynamics of a core-softened model fluid: Insights from grand canonical Monte Carlo simulations and integral equations theory
,”
J. Chem. Phys.
130
,
174504
(
2009
).
46.
S. T.
Milner
,
T. A.
Witten
, and
M. E.
Cates
, “
Theory of the grafted polymer brush
,”
Macromolecules
21
,
2610
2619
(
1988
).
47.
T.
Curk
,
F. J.
Martinez-Veracoechea
,
D.
Frenkel
, and
J.
Dobnikar
, “
Collective ordering of colloids in grafted polymer layers
,”
Soft Matter
9
,
5565
5571
(
2013
).
48.
M. K.
Singh
,
P.
Ilg
,
R. M.
Espinosa-Marzal
,
N. D.
Spencer
, and
M.
Kröger
, “
Influence of chain stiffness, grafting density and normal load on the tribological and structural behavior of polymer brushes: A nonequilibrium-molecular-dynamics study
,”
Polymers
8
,
254
(
2016
).
49.
S.
Chandran
,
N.
Begam
, and
J. K.
Basu
, “
Dispersion of polymer grafted nanoparticles in polymer nanocomposite films: Insights from surface x-ray scattering and microscopy
,”
J. Appl. Phys.
116
,
222203
(
2014
).
50.
C. M.
Wijmans
and
E. B.
Zhulina
, “
Polymer brushes at curved surfaces
,”
Macromolecules
26
,
7214
7224
(
1993
).
51.
P. Y.
Lai
and
K.
Binder
, “
Structure and dynamics of grafted polymer layers: A Monte Carlo simulation
,”
J. Chem. Phys.
95
,
9288
9299
(
1991
).
52.
F.
Lo Verso
,
L.
Yelash
,
S. A.
Egorov
, and
K.
Binder
, “
Effect of the solvent quality on the structural rearrangement of spherical brushes: Coarse-grained models
,”
Soft Matter
8
,
4185
4196
(
2012
).
53.
J. P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
, 3rd ed. (
Academic Press
,
London
,
2006
).
54.
L. S.
Ornstein
and
F.
Zernike
, “
Accidental deviations of density and opalescence at the critical point of a single substance
,”
Proc. K. Ned. Akad. Wet., Ser. B: Phys. Sci.
17
,
793
806
(
1914
).
55.
The Equilibrium Theory of Classical Fluids
, edited by
H.
Frisch
and
J. L.
Lebowitz
(
Benjamin
,
New York
,
1964
), ASIN B000PHQPES.
56.
S.-L.
Huang
, “
Virial coefficients for the hard Gaussian overlap model
,”
Int. J. Mod. Phys. C
10
,
361
374
(
1999
).
57.
C. G.
Gray
,
K. E.
Gubbins
, and
C. G.
Joslin
,
Theory of Molecular Fluids
, Applications Vol. 2 (
Oxford University Press
,
2011
), ISBN 0191004871, 9780191004872.
58.
W. R.
Smith
and
I.
Nezbeda
, “
The reference average Mayer-function (RAM) perturbation theory for molecular fluids
,”
Adv. Chem.
204
,
235
279
(
1983
).
59.
A.
Patrykiejew
,
S.
Sokołowski
, and
O.
Pizio
, “
Statistical surface thermodynamics
,” in
Surface and Interface Science
, edited by
K.
Wandelt
(
Wiley
,
Berlin
,
2016
), Vol. 6, pp.
883
1253
.
60.
N. K.
Li
,
H. S.
Kim
,
J. A.
Nash
,
M.
Lim
, and
Y. G.
Yingling
, “
Progress in molecular modelling of DNA materials
,”
Mol. Simul.
40
,
777
783
(
2014
).
61.
L.
Di Michele
and
E.
Eiser
, “
Developments in understanding and controlling self assembly of DNA-functionalized colloids
,”
Phys. Chem. Chem. Phys.
15
,
3115
3129
(
2013
).
62.
L. J. D.
Frink
and
A. G.
Salinger
, “
Two- and three-dimensional nonlocal density functional theory for inhomogeneous fluids: II. Solvated polymers as a benchmark problem
,”
J. Comput. Phys.
159
,
425
439
(
2000
).
63.
Y.
Liu
,
H.
Liu
,
Y.
Hu
, and
J.
Jiang
, “
Development of a density functional theory in three-dimensional nanoconfined space: H2 storage in metal-organic frameworks
,”
J. Phys. Chem. B
113
,
12326
12331
(
2009
).
64.
M. P.
Sears
and
L. J. D.
Frink
, “
A new efficient method for density functional theory calculations of inhomogeneous fluids
,”
J. Comput. Phys.
190
,
184
200
(
2003
).
65.
S. P.
Hlushak
,
W.
Rżysko
, and
S.
Sokołowski
, “
Density functional study of flexible chain molecules at curved surfaces
,”
J. Chem. Phys.
131
,
094904
(
2009
).
You do not currently have access to this content.