Molecular simulation is a powerful tool for investigating microscopic behavior in various chemical systems, where the use of suitable models is critical to successfully reproduce the structural and dynamic properties of the real systems of interest. In this context, molecular dynamics simulation studies of self-assembly processes in metal-organic frameworks (MOFs), a well-known class of porous materials with interesting chemical and physical properties, are relatively challenging, where a reasonably accurate representation of metal-ligand interactions is anticipated to play an important role. In the current study, we both investigate the performance of some existing models and introduce and test new models to help explore the self-assembly in an archetypal Zn-carboxylate MOF system. To this end, the behavior of six different Zn-ion models, three solvent models, and two ligand models was examined and validated against key experimental structural parameters. To explore longer time scale ordering events during MOF self-assembly via explicit solvent simulations, it is necessary to identify a suitable combination of simplified model components representing metal ions, organic ligands, and solvent molecules. It was observed that an extended cationic dummy atom (ECDA) Zn-ion model combined with an all-atom carboxylate ligand model and a simple dipolar solvent model can reproduce characteristic experimental structures for the archetypal MOF system. The successful use of these models in extensive sets of molecular simulations, which provide key insights into the self-assembly mechanism of this archetypal MOF system occurring during the early stages of this process, has been very recently reported.

1.
L.
Xie
,
G. R.
Smith
,
X.
Feng
, and
R.
Schwartz
,
Biophys. J.
103
,
1545
(
2012
).
2.
D. C.
Rappaport
,
Phys. Rev. E
86
,
051917
(
2012
).
3.
B.
Chen
and
R.
Tycko
,
Biophys. J.
100
,
3035
(
2011
).
4.
J. M.
Grime
and
G. A.
Voth
,
Biophys. J.
103
,
1774
(
2012
).
5.
T.
Carpenter
,
P. J.
Bond
,
S.
Khalid
, and
M. S. P.
Sansom
,
Biophys. J.
95
,
3790
(
2008
).
6.
K. A.
Scott
,
P. J.
Bond
,
A.
Ivetac
,
A. P.
Chetwynd
,
S.
Khalid
, and
M. S.
Sansom
,
Structure
16
,
621
(
2008
).
7.
A. A.
Skjevik
,
B. D.
Madej
,
C. J.
Dickson
,
C.
Lin
,
K.
Teigen
,
R. C.
Walker
, and
I. R.
Gould
,
Phys. Chem. Chem. Phys.
18
,
10573
(
2016
).
8.
A. H.
de Vries
,
A. E.
Mark
, and
S. J.
Marrink
,
J. Am. Chem. Soc.
126
,
4488
(
2004
).
9.
S.
Esteban-Martın
and
J.
Salgado
,
Biophys. J.
92
,
903
(
2007
).
10.
D.
Poger
,
W. F.
van Gunsteren
, and
A. E.
Mark
,
J. Comput. Chem.
31
,
1117
(
2010
).
11.
S.
Khalid
,
P. J.
Bond
,
J.
Holyoake
,
R. W.
Hawtin
, and
M. S. P.
Sansom
,
J. R. Soc., Interface
5
(
Supp. 3
),
241
(
2008
).
12.
P. J.
Bond
,
J.
Holyoake
,
A.
Ivetac
,
S.
Khalid
, and
M. S.
Sansom
,
J. Struct. Biol.
157
,
593
(
2007
).
13.
S. J.
Marrink
and
A. E.
Mark
,
J. Am. Chem. Soc.
125
,
15233
(
2003
).
14.
W.
Shinoda
,
R.
DeVane
, and
M. L.
Klein
,
J. Phys. Chem. B
114
,
6836
(
2010
).
15.
N.
Thota
,
Z.
Luo
,
Z.
Hu
, and
J.
Jiang
,
J. Phys. Chem. B
117
,
9690
(
2013
).
16.
S.
Liang
and
P. G.
Kusalik
,
Chem. Sci.
2
,
1286
(
2011
).
17.
J.
Vatamanu
and
P. G.
Kusalik
,
Phys. Chem. Chem. Phys.
12
,
15065
(
2010
).
18.
M. R.
Walsh
,
G. T.
Beckham
,
C. A.
Koh
,
E. D.
Sloan
,
D. T.
Wu
, and
A. K.
Sum
,
J. Phys. Chem. C
115
,
21241
(
2011
).
19.
E. J.
Wallace
and
M. S.
Sansom
,
Nanotechnology
20
,
045101
(
2009
).
20.
M.
Luo
and
L. L.
Dai
,
J. Phys.: Condens. Matter
19
,
375109
(
2007
).
21.
G.
Srinivas
and
M. L.
Klein
,
Nanotechnology
18
,
205703
(
2007
).
22.
H. C.
Zhou
and
S.
Kitagawa
,
Chem. Soc. Rev.
43
,
5415
(
2014
).
23.
H. C.
Zhou
,
J. R.
Long
, and
O. M.
Yaghi
,
Chem. Rev.
112
,
673
(
2012
).
24.
M. P.
Suh
,
H. J.
Park
,
T. K.
Prasad
, and
D.-W.
Lim
,
Chem. Rev.
112
,
782
(
2012
).
25.
J.
Liu
,
L.
Chen
,
H.
Cui
,
J.
Zhang
,
L.
Zhang
, and
C.-Y.
Su
,
Chem. Soc. Rev.
43
,
6011
(
2014
).
26.
T.
Davic
and
C.
Serre
,
Chem. Soc. Rev.
43
,
6097
(
2014
).
27.
C.
Pagis
,
M.
Ferbinteanu
,
G.
Rothenberg
, and
S.
Tanase
,
ACS Catal.
6
,
6063
(
2016
).
28.
M.
Eddaoudi
,
D. B.
Moler
,
H.
Li
,
B.
Chen
,
T. M.
Reineke
,
M.
O’Keeffe
, and
O. M.
Yaghi
,
Acc. Chem. Res.
34
,
319
(
2001
).
29.
O. M.
Yaghi
,
M.
O’Keeffe
,
N. W.
Ockwig
,
H. K.
Chae
,
M.
Eddaoudi
, and
J.
Kim
,
Nature
423
,
705
(
2003
).
30.
D. J.
Tranchemontagne
,
J. L.
Mendoza-Cortés
,
M.
O’Keeffe
, and
O. M.
Yaghi
,
Chem. Soc. Rev.
38
,
1257
(
2009
).
31.
M.
Shoaee
,
M. W.
Anderson
, and
M. P.
Attfield
,
Angew. Chem., Int. Ed.
47
,
8525
(
2008
).
32.
J. A.
Rood
,
W. C.
Boggess
,
B. C.
Noll
, and
K. W.
Henderson
,
J. Am. Chem. Soc.
129
,
13675
(
2007
).
33.
M.
Li
and
M.
Dincă
,
Chem. Mater.
27
,
3203
(
2015
).
34.
G.
Férey
,
M.
Haouas
,
T.
Loiseau
, and
F.
Taulelle
,
Chem. Mater.
26
,
299
(
2014
).
35.
S.
Surblé
,
F.
Millange
,
C.
Serre
,
G.
Férey
, and
R. I.
Walton
,
Chem. Commun.
0
,
1518
(
2006
).
36.
M. G.
Goesten
,
E.
Stavitski
,
J.
Juan-Alcañiz
,
A.
Martiñez-Joaristi
,
A. V.
Petukhov
,
F.
Kapteijn
, and
J.
Gason
,
Catal. Today
205
,
120
(
2013
).
37.
M. G.
Goesten
,
P. C. M. M.
Magusin
,
E. A.
Pidko
,
B.
Mezari
,
E. J. M.
Hensen
,
F.
Kapteijn
, and
J.
Gason
,
Inorg. Chem.
53
,
882
(
2014
).
38.
39.
D. C.
Rappaport
,
Phys. Rev. E.
70
,
051905
(
2004
).
40.
G.
Srinivas
and
J. W.
Pitera
,
Nano Lett.
8
,
611
(
2008
).
41.
A. Y.
Shih
,
A.
Arkhipov
,
P. L.
Freddolino
,
S. G.
Sligar
, and
K.
Schulten
,
J. Phys. Chem. B
111
,
11095
(
2007
).
42.
G.
Srinivas
,
J. C.
Shell
,
S. O.
Nielsen
,
D. E.
Discher
, and
M. L.
Klein
,
J. Phys. Chem. B
108
,
8153
(
2004
).
43.
J.
Anwar
and
P. K.
Boateng
,
J. Am. Chem. Soc.
120
,
9600
(
1998
).
44.
S.
Auer
and
D.
Frenkel
,
Nature
409
,
1020
(
2000
).
45.
R. H.
Stote
and
M.
Karplus
,
Proteins
23
,
12
(
1995
).
46.
J.
Åqvist
,
J. Mol. Struct.: THEOCHEM
256
,
135
(
1992
).
47.
R. D.
Hancock
,
Acc. Chem. Res.
23
,
253
(
1990
).
48.
A.
Vedani
and
D. W.
Huhta
,
J. Am. Chem. Soc.
112
,
4759
(
1990
).
49.
Y. P.
Pang
,
K.
Xu
,
J. E.
Yazal
, and
F. G.
Prendergas
,
Protein Sci.
9
,
1857
(
2000
).
50.
Y. P.
Pang
,
J. Mol. Model.
5
,
196
(
1999
).
51.
P.
Oelschlaeger
,
M.
Klahn
,
W. A.
Beard
,
S. H.
Wilson
, and
A.
Warshel
,
J. Mol. Biol.
366
,
687
(
2007
).
52.
J.
Åqvist
and
A.
Warshel
,
J. Am. Chem. Soc.
112
,
2860
(
1990
).
53.
F.
Lin
and
R. X.
Wang
,
J. Chem. Theory Comput.
6
,
1852
(
2010
).
55.
F.
Duarte
,
P.
Bauer
,
A.
Barrozo
,
B. A.
Amrein
,
M.
Purg
,
J.
Åqvist
, and
S. C. L.
Kamerlin
,
J. Phys. Chem. B
118
,
4351
(
2014
).
56.
M.
Yoneya
,
T.
Yamaguchi
,
S.
Sato
, and
M.
Fujita
,
J. Am. Chem. Soc.
134
,
14401
(
2012
).
57.
M.
Yoneya
,
S.
Tsuzuki
, and
M.
Aoyagi
,
Phys. Chem. Chem. Phys.
17
,
8649
(
2015
).
58.
H.
Li
,
M.
Eddaoudi
,
T. L.
Groy
, and
O. M.
Yaghi
,
J. Am. Chem. Soc.
120
,
8571
(
1998
).
59.
H.
Li
,
C. E.
Davis
,
T. L.
Groy
,
D. G.
Kelley
, and
O. M.
Yaghi
,
J. Am. Chem. Soc.
120
,
2186
(
1998
).
60.
G.
Guilera
and
J. W.
Steed
,
Chem. Commun.
20
,
1563
(
1999
).
61.
S.-Y.
Yang
,
L.-S.
Long
,
R.-B.
Huang
, and
L.-S.
Zheng
,
Main Group Met. Chem.
25
,
329
(
2002
).
62.
M.
Edgar
,
R.
Mitchell
,
A. M. Z.
Slawin
,
P.
Lightfoot
, and
P. A.
Wright
,
Chem. - Eur. J.
7
,
5168
(
2001
).
63.
S. I.
Vagin
,
A. K.
Ott
, and
B.
Rieger
,
Chem. Ing. Tech.
79
,
767
(
2007
).
64.
S. M.
Hawxwell
,
H.
Adams
, and
L.
Brammer
,
Acta Crystallogr., Sect. B: Struct. Sci.
62
,
808
(
2006
).
65.
S. Y.
Yang
,
L. S.
Long
,
R. B.
Huang
,
L. S.
Zheng
, and
S. W.
Ng
,
Acta Crystallogr., Sect. E: Struct. Rep. Online
61
,
m1671
(
2005
).
66.
D.
Biswal
and
P. G.
Kusalik
,
ACS Nano
11
,
258
(
2017
).
67.
T.
Dudev
and
C.
Lim
,
J. Am. Chem. Soc.
124
,
6759
(
2002
).
68.
J.
Koca
,
C. G.
Jhan
,
R. C.
Rittenhouse
, and
R. L.
Ornstein
,
J. Comput. Chem.
24
,
368
(
2003
).
69.
Y. L.
Li
,
Y.
Mei
,
D. W.
Zhang
,
D. Q.
Xie
, and
J. Z. H.
Zhang
,
J. Phys. Chem. B
115
,
10154
(
2011
).
70.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
118
,
11225
(
1996
).
71.
J.
Weeks
,
D.
Chandler
, and
H.
Andersen
,
J. Chem. Phys.
54
,
5237
(
1971
).
72.
S.
Pronk
,
S.
Páll
,
R.
Schulz
,
P.
Larsson
,
P.
Bjelkmar
,
R.
Apostolov
,
M. R.
Shirts
,
J. C.
Smith
,
P. M.
Kasson
,
D.
van der Spoel
,
B.
Hess
, and
E.
Lindahl
,
Bioinformatics
29
,
845
(
2013
).
73.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
74.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
75.
B.
Hess
,
H.
Bekker
,
H. J. C.
Berendsen
, and
J. G. E. M.
Fraaije
,
J. Comput. Chem.
18
,
1463
(
1997
).
76.
P.
Kollman
,
Chem. Rev.
93
,
2395
(
1993
).
77.
S.
Bureekaew
,
S.
Amirjalayer
, and
R.
Schmid
,
J. Mater. Chem.
22
,
10249
(
2012
).
78.
A.
Erxleben
,
Coord. Chem. Rev.
246
,
203
(
2003
).
79.
J. P.
Larentzos
and
L. J.
Criscenti
,
J. Phys. Chem. B
112
,
14243
(
2008
).

Supplementary Material

You do not currently have access to this content.