An effective six-dimensional ab initio potential energy surface (PES) for H2–OCS which explicitly includes the intramolecular stretch normal modes of carbonyl sulfide (OCS) is presented. The electronic structure computations are carried out using the explicitly correlated coupled cluster [CCSD(T)-F12] method with the augmented correlation-consistent aug-cc-pVTZ basis set, and the accuracy is critically tested by performing a series of benchmark calculations. Analytic four-dimensional PESs are obtained by least-squares fitting vibrationally averaged interaction energies to the Morse/long-range potential model. These fits to 13 485 points have a root-mean-square deviation (RMSD) of 0.16 cm−1. The combined radial discrete variable representation/angular finite basis representation method and the Lanczos algorithm were employed to evaluate the rovibrational energy levels for five isotopic species of the OCS-hydrogen complexes. The predicted transition frequencies and intensities based on the resulting vibrationally averaged PESs are in good agreement with the available experimental values, whose RMSDs are smaller than 0.004 cm−1 for five different species of OCS-hydrogen complexes. The calculated infrared band origin shifts for all five species of OCS-hydrogen complexes are only 0.03 cm−1 smaller than the corresponding experimental values. These validate the high quality of our PESs which can be used for modeling OCS doped in hydrogen clusters to further study quantum solution and microscopic superfluidity. In addition, the analytic coordinate transformation functions between isotopologues are also derived due to the center of mass shifting of different isotope substitutes.

1.
S.
Grebenev
,
J. P.
Toennies
, and
A. F.
Vilesov
,
Science
279
,
2083
(
1998
).
2.
J. P.
Toennies
and
A. F.
Vilesov
,
Annu. Rev. Phys. Chem.
49
,
1
(
1998
).
3.
C.
Callegari
,
K. K.
Lehmann
,
R.
Schmied
, and
G.
Scoles
,
J. Chem. Phys.
115
,
10090
(
2001
).
4.
J. P.
Toennies
and
A. F.
Vilesov
,
Angew. Chem., Int. Ed.
43
,
2622
(
2004
).
5.
M.
Barranco
,
R.
Guardiola
,
S.
Hernndez
,
R.
Mayol
,
J.
Navarro
, and
M.
Pi
,
J. Low Temp. Phys.
142
,
1
(
2006
).
6.
M. Y.
Choi
,
G. E.
Douberly
,
T. M.
Falconer
,
W. K.
Lewis
,
C. M.
Lindsay
,
J. M.
Merritt
,
P. L.
Stile
, and
R. E.
Miller
,
Int. Rev. Phys. Chem.
25
,
15
(
2006
).
7.
J.
Tang
,
Y.
Xu
,
A. R. W.
McKellar
, and
W.
Jäger
,
Science
297
,
2030
(
2002
).
8.
S.
Grebenev
,
B.
Sartakov
,
J. P.
Toennies
, and
A. F.
Vilesov
,
Science
289
,
1532
(
2000
).
9.
K.
Szalewicz
,
Int. Rev. Phys. Chem.
27
,
273
(
2008
).
10.
L. A.
Surin
,
JETP Lett.
97
,
57
(
2013
).
11.
J. P.
Toennies
,
Mol. Phys.
111
,
1879
(
2013
).
12.
T.
Zeng
and
P.-N.
Roy
,
Rep. Prog. Phys.
77
,
046601
(
2014
).
13.
T.
Zeng
,
H.
Li
, and
P.-N.
Roy
,
Int. J. Quantum Chem.
115
,
535
(
2015
).
14.
M.
Hartmann
,
R. E.
Miller
,
J. P.
Toennies
, and
A. F.
Vilesov
,
Phys. Rev. Lett.
75
,
1566
(
1995
).
15.
Y.
Kwon
,
D. M.
Ceperley
, and
K. B.
Whaley
,
J. Chem. Phys.
104
,
2341
(
1996
).
16.
Y.
Kwon
and
K. B.
Whaley
,
Phys. Rev. Lett.
89
,
273401
(
2002
).
17.
J.
Tang
and
A. R. W.
McKellar
,
J. Chem. Phys.
119
,
5467
(
2003
).
18.
Y.
Xu
and
W.
Jäger
,
J. Chem. Phys.
119
,
5457
(
2003
).
19.
F.
Paesani
,
R. E.
Zillich
, and
K. B.
Whaley
,
J. Chem. Phys.
119
,
11682
(
2003
).
20.
J.
Tang
and
A. R. W.
McKellar
,
J. Chem. Phys.
121
,
3087
(
2004
).
21.
F.
Paesani
,
R. E.
Zilich
,
Y.
Kwon
, and
K. B.
Whaley
,
J. Chem. Phys.
122
,
181106
(
2005
).
22.
A. R. W.
McKellar
,
Y.
Xu
, and
W.
Jäger
,
Phys. Rev. Lett.
97
,
183401
(
2006
).
23.
C.
Piccarreta
and
F. A.
Gianturco
,
Eur. Phys. J. D
37
,
93
(
2006
).
24.
A. R. W.
McKellar
,
Y.
Xu
, and
W.
Jäger
,
J. Phys. Chem. A
111
,
7329
(
2007
).
25.
J.
Michaud
,
Y.
Xu
, and
W.
Jäger
,
J. Chem. Phys.
129
,
144311
(
2008
).
26.
H.
Li
and
Y. T.
Ma
,
J. Chem. Phys.
137
,
234310
(
2012
).
27.
Y.
Xu
and
W.
Jäger
,
Phys. Rev. Lett.
91
,
163401
(
2003
).
28.
F.
Paesani
and
K. B.
Whaley
,
J. Chem. Phys.
121
,
5293
(
2004
).
29.
J.
Tang
and
A. R. W.
McKellar
,
J. Chem. Phys.
123
,
114314
(
2005
).
30.
A. R. W.
McKellar
,
J. Chem. Phys.
127
,
044315
(
2007
).
31.
L.
Wang
,
D. Q.
Xie
,
R. J.
Le Roy
, and
P.-N.
Roy
,
J. Chem. Phys.
137
,
104311
(
2012
).
32.
J.
Tang
,
A. R. W.
McKellar
,
F.
Mezzacapo
, and
S.
Moroni
,
Phys. Rev. Lett.
92
,
145503
(
2004
).
33.
J.
Tang
and
A. R. W.
McKellar
,
J. Chem. Phys.
121
,
181
(
2004
).
34.
F.
Paesani
,
Y.
Kwon
, and
K. B.
Whaley
,
Phys. Rev. Lett.
94
,
153401
(
2005
).
35.
A. R. W.
McKellar
,
J. Chem. Phys.
128
,
044308
(
2008
).
36.
H.
Li
,
N.
Blinov
,
P.-N.
Roy
, and
R. J.
Le Roy
,
J. Chem. Phys.
130
,
144305
(
2009
).
37.
H.
Li
,
R. J.
Le Roy
,
P.-N.
Roy
, and
A. R. W.
McKellar
,
Phys. Rev. Lett.
105
,
133401
(
2010
).
38.
D. T.
Moore
and
R. E.
Miller
,
J. Chem. Phys.
119
,
4713
(
2003
).
39.
R. E.
Zillich
and
K. B.
Whaley
,
Phys. Rev. B
69
,
104517
(
2004
).
40.
D.
Blume
,
M.
Lewerenz
,
F.
Huisken
, and
M.
Kaloudis
,
J. Chem. Phys.
105
,
8666
(
1996
).
41.
D. T.
Moore
and
R. E.
Miller
,
J. Phys. Chem. A
108
,
1930
(
2004
).
42.
R. E.
Zillich
,
Y.
Kwon
, and
K. B.
Whaley
,
Phys. Rev. Lett.
93
,
250401
(
2004
).
43.
J.
Tang
and
A. R. W.
McKellar
,
J. Chem. Phys.
119
,
754
(
2003
).
44.
S.
Moroni
,
M.
Botti
,
S.
De Palo
, and
A. R. W.
McKellar
,
J. Chem. Phys.
122
,
094314
(
2005
).
45.
L. A.
Surin
,
A. V.
Potapov
,
B. S.
Dumesh
,
S.
Schlemmer
,
Y.
Xu
,
P. L.
Raston
, and
W.
Jäger
,
Phys. Rev. Lett.
101
,
233401
(
2008
).
46.
P. L.
Raston
,
W.
Jäger
,
H.
Li
,
R. J.
Le Roy
, and
P.-N.
Roy
,
Phys. Rev. Lett.
108
,
253402
(
2012
).
47.
T.
Zeng
,
H.
Li
, and
P.-N.
Roy
,
J. Phys. Chem. Lett.
4
,
18
(
2013
).
48.
T.
Zeng
,
G.
Guillon
,
J. T.
Cantin
, and
P.-N.
Roy
,
J. Phys. Chem. Lett.
4
,
2391
(
2013
).
49.
S.
Grebenev
,
M.
Hartmann
,
M.
Havenith
,
B.
Sartakov
,
J. P.
Toennies
, and
A. F.
Vilesov
,
J. Chem. Phys.
112
,
4485
(
2000
).
50.
J.
Tang
and
A. R. W.
McKellar
,
J. Chem. Phys.
116
,
646
(
2002
).
51.
S.
Grebenev
,
S.
Havenith
,
M.
Madeja
,
J. P.
Toennies
, and
A. F.
Vilesov
,
J. Chem. Phys.
113
,
9060
(
2000
).
52.
F.
Paesani
and
K. B.
Whaley
,
J. Chem. Phys.
121
,
4180
(
2004
).
53.
S.
Grebenev
,
E.
Lugovoi
,
B. G.
Sartakov
,
J. P.
Toennies
, and
A. F.
Vilesov
,
Faraday Discuss.
118
,
19
(
2001
).
54.
S.
Grebenev
,
B. G.
Sartakov
,
J. P.
Toennies
, and
A. F.
Vilesov
,
J. Chem. Phys.
114
,
617
(
2001
).
55.
Y.
Kwon
and
K. B.
Whaley
,
J. Low Temp. Phys.
134
,
269
(
2004
).
56.
S.
Grebenev
,
B. G.
Sartakov
,
J. P.
Toennies
, and
A. F.
Vilesov
,
J. Chem. Phys.
118
,
8656
(
2003
).
57.
F.
Paesani
and
K. B.
Whaley
,
J. Chem. Phys.
124
,
234310
(
2006
).
58.
S.
Grebenev
,
B. G.
Sartakov
,
J. P.
Toennies
, and
A. F.
Vilesov
,
Europhys. Lett.
83
,
66008
(
2008
).
59.
S.
Grebenev
,
B. G.
Sartakov
,
J. P.
Toennies
, and
A. F.
Vilesov
,
J. Chem. Phys.
132
,
064501
(
2010
).
60.
Z. H.
Yu
,
K. J.
Higgins
,
W.
Kelperer
,
M. C.
McCarthy
, and
P.
Thadeus
,
J. Chem. Phys.
123
,
221106
(
2005
).
61.
Z. H.
Yu
,
K. J.
Higgins
,
W.
Klemperer
,
M. C.
McCarthy
,
P.
Thadeus
,
K.
Liao
, and
W.
Jäger
,
J. Chem. Phys.
127
,
054305
(
2007
).
62.
K. J.
Higgins
,
Z.
Yu
, and
W.
Klemperer
, “
Intermolecular potential and 4-dimensional bound state calculations of H2-OCS complexes
,” 57th Ohio State University International Symposium on Molecular Spectroscopy, Columbus, OH, 18–22 June 2007, paper FB10.
63.
F.
Paesani
and
K. B.
Whaley
,
Mol. Phys.
104
,
61
(
2006
).
64.
Y.
Kwon
and
K. B.
Whaley
,
J. Low Temp. Phys.
140
,
227
(
2005
).
65.
R. J.
Le Roy
and
R. D. E.
Henderson
,
Mol. Phys.
105
,
663
(
2007
).
66.
H.
Li
,
P.-N.
Roy
, and
R. J.
Le Roy
,
J. Chem. Phys.
132
,
214309
(
2010
).
67.
T. B.
Adler
,
G.
Knizia
, and
H. J.
Werner
,
J. Chem. Phys.
127
,
221106
(
2007
).
68.
G.
Knizia
,
T. B.
Adler
, and
H. J.
Werner
,
J. Chem. Phys.
130
,
054104
(
2009
).
69.
J. T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
70.
D. E.
Woon
and
T. H.
Dunning
,
J. Chem. Phys.
98
,
1358
(
1993
).
71.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
,
J. Chem. Phys.
116
,
3175
(
2002
).
72.
F.
Weigend
,
Phys. Chem. Chem. Phys.
4
,
4285
(
2002
).
73.
K. E.
Yousaf
and
K. A.
Peterson
,
Chem. Phys. Lett.
476
,
303
(
2009
).
74.
A.
Karton
and
J. M. L.
Martin
,
Theor. Chem. Acta
115
,
330
(
2009
).
75.
Y.
Ajili
,
K.
Hammami
,
N. E.
Jaidane
,
M.
Lanza
,
Y. N.
Kallufina
,
F.
Lique
, and
M.
Hochlaf
,
Phys. Chem. Chem. Phys.
15
,
10062
(
2013
).
76.
Y. N.
Kalugina
,
I. A.
Buryak
,
Y.
Ajili
,
A. A.
Vigasin
,
N. E.
Jaidane
, and
M.
Hochlaf
,
J. Chem. Phys.
140
,
234310
(
2014
).
77.
S.
Nasri
,
Y.
Ajili
,
N. E.
Jaidane
,
Y. N.
Kalugina
,
P.
Halvick
, and
T.
Stoecklin
,
Phys. Rev. A
142
,
174301
(
2015
).
78.
Y.
Ajili
,
D. B.
Abdallah
,
M. M.
Al-Mogren
,
F.
Lique
,
J. S.
Francisco
, and
M.
Hochlaf
,
Phys. Rev. A
94
,
012512
(
2016
).
79.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
80.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
 et al, molpro, version 2012.1, a package of ab initio programs, 2012 see http://www.molpro.net.
81.
A.
Foord
,
J. G.
Smith
, and
D. H.
Whiffen
,
Mol. Phys.
29
,
1685
(
1975
).
82.
C. H.
Townes
and
A. L.
Schawlow
,
Microwave Spectroscopy
(
McGraw-Hill
,
New York
,
1955
).
83.
R. N.
Zare
,
Angular Momentum
(
Wiley
,
New York
,
1988
).
84.
X. G.
Wang
,
T.
Carrington
, Jr.
,
R.
Dawes
, and
W.
Jasper
,
J. Mol. Spectrosc.
268
,
53
(
2011
).
85.
X. G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
134
,
044313
(
2011
).
86.
D. M.
Brink
and
G. R.
Satchler
,
Angular Momentum
(
Clarendon
,
Oxford
,
1975
).
87.
A.
Kumar
and
W. J.
Meath
,
Mol. Phys.
54
,
823
(
1985
).
88.
A.
Kumar
and
W. J.
Meath
,
Chem. Phys.
91
,
411
(
1984
).
89.
H. D.
Cohen
and
C. C. J.
Roothaan
,
J. Chem. Phys.
43
,
34
(
1965
).
90.
H.
Li
and
R. J. L.
Roy
,
J. Chem. Phys.
126
,
224301
(
2007
).
91.
R. J.
Le Roy
and
A.
Pashov
,
J. Quant. Spectrosc. Radiat. Transfer
186
,
210
(
2017
);
See http://leroy.uwaterloo.ca/programs/ for betaFIT 2.0: A Computer Program to Fit Potential Function Points to Selected Analytic Functions.
92.
H.
Li
,
X. L.
Zhang
,
R. J.
Le Roy
, and
P.-N.
Roy
,
J. Chem. Phys.
139
,
164315
(
2013
).
93.
J. C.
Light
,
I. P.
Hamilton
, and
J. V.
Lill
,
J. Chem. Phys.
82
,
1400
(
1985
).
94.
D. T.
Colbert
and
W. H.
Miller
,
J. Chem. Phys.
96
,
1982
(
1992
).
95.
C.
Lanczos
,
J. Res. Natl. Bur. Stand.
45
,
255
(
1950
).
96.
S.
Saupe
,
M. H.
Wappelhorst
,
B.
Meyer
,
W.
Urban
, and
A. G.
Maki
,
J. Mol. Spectrosc.
175
,
190
(
1996
).
97.
H.
Wei
,
R. J.
Le Roy
,
R.
Wheatley
, and
W. J.
Meath
,
J. Chem. Phys.
122
,
084321
(
2005
).
98.
A. R. W.
McKellar
,
J. Chem. Phys.
122
,
174313
(
2005
).
99.
P.
Jankowski
,
A. R. W.
McKellar
, and
K.
Szalewicz
,
Science
336
,
1147
(
2012
).
100.
J.
Tang
and
A. R. W.
McKellar
,
J. Chem. Phys.
117
,
8308
(
2002
).
101.
J. K. G.
Watson
, in
Vibrational Spectra and Structure Molecular Spectra
, edited by
J. R.
Durig
(
Elsevier
,
Amsterdam
,
1977
), Vol. 6.

Supplementary Material

You do not currently have access to this content.