Calculation of the Shannon information entropy (S) and its connection with the order-disorder transition and with inter-particle interaction provide a challenging research area in the field of quantum information. Experimental progress with cold trapped atoms has corroborated this interest. In the present work, S is calculated for the Bose-Einstein condensate (BEC) with dominant dipolar interaction for different dipole strengths, trap aspect ratios, and number of particles (N). Trapped dipolar bosons in an anisotropic trap provide an example of a system where the effective interaction is strongly determined by the trap geometry. The main conclusion of the present calculation is that the anisotropic trap reduces the number of degrees of freedom, resulting in more ordered configurations. Landsberg’s order parameter exhibits quick saturation with the increase in scattering length in both prolate and oblate traps. We also define the threshold scattering length which makes the system completely disordered. Unlike non-dipolar BEC in a spherical trap, we do not find a universal linear relation between S and lnN, and we, therefore, introduce a general quintic polynomial fit rather well working for a wide range of particle numbers.

1.
I.
Białynicki-Birula
and
J.
Mycielski
, “
Uncertainty relations for information entropy in wave mechanics
,”
Commun. Math. Phys.
44
,
129
(
1975
).
2.
S. R.
Gadre
and
S. B.
Sears
, “
An application of information theory to Compton profiles
,”
J. Chem. Phys.
71
,
4321
(
1979
).
3.
S. B.
Sears
and
S. R.
Gadre
, “
An information theoretic synthesis and analysis of Compton profiles
,”
J. Chem. Phys.
75
,
4626
(
1981
).
4.
T.
Koga
and
M.
Morita
, “
Maximum-entropy inference and momentum density approach
,”
J. Chem. Phys.
79
,
1933
(
1983
).
5.
R. G.
Parr
,
S. K.
Ghosh
, and
K.
Rupnik
, “
Phase-space approach to the density-functional calculation of Compton profiles of atoms and molecules
,”
Phys. Rev. Lett.
56
,
1555
(
1986
).
6.
N. L.
Guevara
,
R. P.
Sagar
, and
R. O.
Esquivel
, “
Information uncertainity-type inequalities in atomic systems
,”
J. Chem. Phys.
119
,
7030
(
2003
).
7.
N. L.
Guevara
,
R. P.
Sagar
, and
R. O.
Esquivel
, “
Local correlation measures in atomic systems
,”
J. Chem. Phys.
122
,
084101
(
2005
).
8.
R. P.
Sagar
and
N. L.
Guevara
, “
Mutual information and correlation measures in atomic systems
,”
J. Chem. Phys.
123
,
044108
(
2005
).
9.
K. D.
Sen
, “
Characteristic features of Shannon information entropy of confined atoms
,”
J. Chem. Phys.
123
,
074110
(
2005
).
10.
M.
Hồ
,
B. J.
Clark
,
V. H.
Smith
, Jr.
,
D. F.
Weaver
,
C.
Gatti
,
R. P.
Sagar
, and
R. O.
Esquivel
, “
Shannon information entropy of molecules and functional groups in the self consistent reaction field
,”
J. Chem. Phys.
112
,
7572
(
2000
).
11.
R. P.
Sagar
and
N. L.
Guevara
, “
Mutual information and electron correlation in momentum space
,”
J. Chem. Phys.
124
,
134101
(
2006
).
12.
S. R.
Gadre
, “
Information entropy and Thomas-Fermi theory
,”
Phys. Rev. A
30
,
620
(
1984
).
13.
S. R.
Gadre
and
R. D.
Bendale
, “
Maximization of atomic information entropy sum in configuration and momentum spaces
,”
Int. J. Quantum Chem.
28
,
311
(
1985
).
14.
S. R.
Gadre
,
S. B.
Sears
,
S. J.
Chakravorty
, and
R. D.
Bendale
, “
Some novel characteristics of atomic information entropies
,”
Phys. Rev. A
32
,
2602
(
1985
).
15.
S. R.
Gadre
and
R. D.
Bendale
, “
Information entropies in quantum chemistry
,”
Curr. Sci. (India)
54
,
970
(
1985
), available at http://www.jstor.org/stable/24087464.
16.
S. B.
Sears
,
R. G.
Parr
, and
U.
Dinur
, “
On the quantum-mechanical kinetic energy as a measure of the information in a distribution
,”
Isr. J. Chem.
19
,
165
(
1980
).
17.
G.
Maroulis
,
M.
Sana
, and
G.
Leroy
Molecular properties and basis set quality: An approach based on information theory
,”
Int. J. Quantum Chem.
19
,
43
(
1981
).
18.
A. M.
Simas
,
A. J.
Thakkar
, and
V. H.
Smith
, Jr.
, “
Basis set quality. II. Information theoretic appraisal of various s-orbital
,”
Int. J. Quantum Chem.
24
,
527
(
1983
).
19.
S. E.
Massen
and
C. P.
Panos
, “
Universal property of the information entropy in atoms, nuclei and atomic clusters
,”
Phys. Lett. A
246
,
530
(
1998
).
20.
S. E.
Massen
and
C. P.
Panos
, “
A link of information entropy and kinetic energy for quantum many-body systems
,”
Phys. Lett. A
280
,
65
69
(
2001
).
21.
S. E.
Massen
,
Ch. C.
Moustakidis
, and
C. P.
Panos
, “
Comparison of the information entropy in fermionic and bosonic systems
,”
Phys. Lett. A
299
,
131
136
(
2002
).
22.
A.
Griesmaier
,
J.
Werner
,
S.
Hensler
,
J.
Stuhler
, and
T.
Pfau
, “
Bose-Einstein condensation of chromium
,”
Phys. Rev. Lett.
94
,
160401
(
2005
).
23.
M.
Lu
,
N. Q.
Burdick
,
S. H.
Youn
, and
B. L.
Lev
, “
Strongly dipolar Bose-Einstein condensate of dysprosium
,”
Phys. Rev. Lett.
107
,
190401
(
2011
).
24.
K.
Aikawa
,
A.
Frisch
,
M.
Mark
,
S.
Baier
,
A.
Rietzler
,
R.
Grimm
, and
F.
Ferlaino
, “
Bose-Einstein condensation of erbium
,”
Phys. Rev. Lett.
108
,
210401
(
2012
).
25.
F.
Dalfovo
,
S.
Giorgin
,
L. P.
Pitaevskii
, and
S.
Stringari
, “
Theory of Bose-Einstein condensation in trapped gases
,”
Rev. Mod. Phys.
71
,
463
(
1999
).
26.
S.
Yi
and
H.
Pu
, “
Vortex structures in dipolar condensates
,”
Phys. Rev. A
73
,
061602(R)
(
2006
).
27.
R. M. W.
van Bijnen
,
D. H. J.
O’Dell
,
N. G.
Parker
, and
A. M.
Martin
, “
Dynamical instability of a rotating dipolar Bose-Einstein condensate
,”
Phys. Rev. Lett.
98
,
150401
(
2007
);
[PubMed]
R. M. W.
van Bijnen
,
A. J.
Dow
,
D. H. J.
O’Dell
,
N. G.
Parker
, and
A. M.
Martin
, “
Exact solutions and stability of rotating dipolar Bose-Einstein condensates in the Thomas-Fermi limit
,”
Phys. Rev. A
80
,
033617
(
2009
).
28.
S.
Giovanazzi
,
A.
Görlitz
, and
T.
Pfau
, “
Tuning the dipolar interaction in quantum gases
,”
Phys. Rev. Lett.
89
,
130401
(
2002
).
29.
K.
Góral
and
L.
Santos
, “
Ground state and elementary excitations of single and binary Bose-Einstein condensates of trapped dipolar gases
,”
Phys. Rev. A
66
,
023613
(
2002
).
30.
T.
Koch
,
T.
Lahaye
,
Fröhlich
,
A.
Griesmaier
, and
T.
Pfau
, “
Stabilization of a purely dipolar quantum gas against collapse
,”
Nat. Phys.
4
,
218
222
(
2008
).
31.
M.
Brtka
,
A.
Gammal
, and
L.
Tomio
, “
Relaxation algorithm to hyperbolic states in Gross-Pitaevskii equation
,”
Phys. Lett. A
359
,
339
(
2006
).
32.
P.
Muruganandam
and
S. K.
Adhikari
, “
Fortran programs for the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap
,”
Comput. Phys. Commun.
180
,
1888
1912
(
2009
).
33.
D.
Vudragović
,
I.
Vidanović
,
A.
Balaž
,
P.
Muruganandam
, and
S. K.
Adhikari
, “
C programs for solving the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap
,”
Comput. Phys. Commun.
183
,
2021
2025
(
2012
).
34.
B.
Satarić
,
V.
Slavnić
,
A.
Belić
,
A.
Balaž
,
P.
Muruganandam
, and
S. K.
Adhikari
, “
Hybrid OpenMP/MPI programs for solving the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap
,”
Comput. Phys. Commun.
200
,
411
(
2016
).
35.
R. K.
Kumar
,
L. E.
Young-S
,
D.
Vudragović
,
A.
Balaž
,
P.
Muruganandam
, and
S. K.
Adhikari
, “
Fortran and C programs for the time-dependent dipolar Gross-Pitaevskii equation in an anisotropic trap
,”
Comput. Phys. Commun.
195
,
117
128
(
2015
).
36.
V.
Lončar
,
A.
Balaž
,
A.
Bogojević
,
S.
Škrbič
,
P.
Muruganandam
, and
S. K.
Adhikari
, “
CUDA programs for solving the time-dependent dipolar Gross-Pitaevskii equation in an anisotropic trap
,”
Comput. Phys. Commun.
200
,
406
(
2016
).
37.
V.
Lončar
,
S.
Škrbič
,
L. E.
Young-S
,
P.
Muruganandam
,
S. K.
Adhikari
, and
A.
Balaž
, “
OpenMP, OpenMP/MPI, and CUDA/MPI C programs for solving the time-dependent dipolar Gross-Pitaevskii equation
,”
Comput. Phys. Commun.
209
,
190
(
2016
).
38.
S. R.
Gadre
and
R. D.
Bendale
, “
Rigorous relationship among quantum-mechanical kinetic energy and atomic information entropies: Upper and lower bounds
,”
Phys. Rev. A
36
,
1932
(
1987
).
39.
P. T.
Landsberg
, “
Can entropy and ‘order’ increase together?
,”
Phys. Lett. A
102
,
171
(
1984
).
40.
P. T.
Landsberg
and
J. S.
Shiner
, “
Disorder and complexity in an ideal non-equilibrium Fermi gas
,”
Phys. Lett. A
245
,
228
(
1998
).
41.
L. M.
Ghiringhelli
,
I. P.
Hamilton
, and
L.
Delle Site
, “
Interacting electrons, spin statistics, and information theory
,”
J. Chem. Phys.
132
,
014106
(
2010
).
You do not currently have access to this content.