Constructing Markov state models from large-scale molecular dynamics simulation trajectories is a promising approach to dissect the kinetic mechanisms of complex chemical and biological processes. Combined with transition path theory, Markov state models can be applied to identify all pathways connecting any conformational states of interest. However, the identified pathways can be too complex to comprehend, especially for multi-body processes where numerous parallel pathways with comparable flux probability often coexist. Here, we have developed a path lumping method to group these parallel pathways into metastable path channels for analysis. We define the similarity between two pathways as the intercrossing flux between them and then apply the spectral clustering algorithm to lump these pathways into groups. We demonstrate the power of our method by applying it to two systems: a 2D-potential consisting of four metastable energy channels and the hydrophobic collapse process of two hydrophobic molecules. In both cases, our algorithm successfully reveals the metastable path channels. We expect this path lumping algorithm to be a promising tool for revealing unprecedented insights into the kinetic mechanisms of complex multi-body processes.

1.
G. M.
Whitesides
and
M.
Boncheva
, “
Beyond molecules: Self-assembly of mesoscopic and macroscopic components
,”
Proc. Natl. Acad. Sci. U. S. A.
99
(
8
),
4769
4774
(
2002
).
2.
J.-M.
Lehn
, “
Toward self-organization and complex matter
,”
Science
295
(
5564
),
2400
2403
(
2002
).
3.
T.
Higashihara
,
M.
Hayashi
, and
A.
Hirao
, “
Synthesis of well-defined star-branched polymers by stepwise iterative methodology using living anionic polymerization
,”
Prog. Polym. Sci.
36
(
3
),
323
375
(
2011
).
4.
P.-F.
Gou
,
W.-P.
Zhu
, and
Z.-Q.
Shen
, “
Synthesis, self-assembly, and drug-loading capacity of well-defined cyclodextrin-centered drug-conjugated amphiphilic A14B7 miktoarm star copolymers based on poly (ε-caprolactone) and poly (ethylene glycol)
,”
Biomacromolecules
11
(
4
),
934
943
(
2010
).
5.
A. P.
Esser-Kahn
 et al., “
Triggered release from polymer capsules
,”
Macromolecules
44
(
14
),
5539
5553
(
2011
).
6.
G. M.
Whitesides
and
B.
Grzybowski
, “
Self-assembly at all scales
,”
Science
295
(
5564
),
2418
2421
(
2002
).
7.
M. A. C.
Stuart
 et al., “
Emerging applications of stimuli-responsive polymer materials
,”
Nat. Mater.
9
(
2
),
101
113
(
2010
).
8.
D. D.
Boehr
,
R.
Nussinov
, and
P. E.
Wright
, “
The role of dynamic conformational ensembles in biomolecular recognition
,”
Nat. Chem. Biol.
5
(
11
),
789
796
(
2009
).
9.
J. E.
Straub
and
D.
Thirumalai
, “
Toward a molecular theory of early and late events in monomer to amyloid fibril formation
,”
Annu. Rev. Phys. Chem.
62
,
437
463
(
2011
).
10.
Y.
Mai
and
A.
Eisenberg
, “
Self-assembly of block copolymers
,”
Chem. Soc. Rev.
41
(
18
),
5969
5985
(
2012
).
11.
Y. L.
Wang
 et al., “
Dissipative particle dynamics simulation study on the mechanisms of self-assembly of large multimolecular micelles from amphiphilic dendritic multiarm copolymers
,”
Soft Matter
9
(
12
),
3293
3304
(
2013
).
12.
S.
Yamamoto
,
Y.
Maruyama
, and
S.-a.
Hyodo
, “
Dissipative particle dynamics study of spontaneous vesicle formation of amphiphilic molecules
,”
J. Chem. Phys.
116
(
13
),
5842
5849
(
2002
).
13.
P.
Hoogerbrugge
and
J.
Koelman
, “
Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics
,”
Europhys. Lett.
19
(
3
),
155
(
1992
).
14.
C.
Georgiadis
 et al., “
Brownian dynamics simulations on the self-assembly behavior of AB hybrid dendritic−star copolymers
,”
Langmuir
27
(
2
),
835
842
(
2010
).
15.
S.
Lin
 et al., “
Brownian molecular dynamics simulation on self-assembly behavior of diblock copolymers: Influence of chain conformation
,”
J. Phys. Chem. B
113
(
42
),
13926
13934
(
2009
).
16.
X.
Zeng
 et al., “
Elucidating dominant pathways of the nano-particle self-assembly process
,”
Phys. Chem. Chem. Phys.
18
(
34
),
23494
23499
(
2016
).
17.
D.
Bucher
 et al., “
Accessing a hidden conformation of the maltose binding protein using accelerated molecular dynamics
,”
PLoS Comput. Biol.
7
(
4
),
e1002034
(
2011
).
18.
D.-A.
Silva
 et al., “
A role for both conformational selection and induced fit in ligand binding by the LAO protein
,”
PLoS Comput. Biol.
7
,
e1002054
(
2011
).
19.
M.
Meuwly
and
Q.
Cui
, “
Protein functional dynamics: From femtoseconds to milliseconds preface
,”
Chem. Phys.
396
,
1
2
(
2012
).
20.
M. V.
Walter
 et al., “
Hybrid one-dimensional nanostructures: One-pot preparation of nanoparticle chains via directed self-assembly of in situ synthesized discrete Au nanoparticles
,”
Langmuir
28
(
14
),
5947
5955
(
2012
).
21.
C.-A.
Palma
,
P.
Samorì
, and
M.
Cecchini
, “
Atomistic simulations of 2D bicomponent self-assembly: From molecular recognition to self-healing
,”
J. Am. Chem. Soc.
132
(
50
),
17880
17885
(
2010
).
22.
C.-A.
Palma
,
M.
Cecchini
, and
P.
Samorì
, “
Predicting self-assembly: From empirism to determinism
,”
Chem. Soc. Rev.
41
(
10
),
3713
3730
(
2012
).
23.
X.
Li
 et al., “
Mechanism of inhibition of human islet amyloid polypeptide-induced membrane damage by a small organic fluorogen
,”
Sci. Rep.
6
,
21614
(
2016
).
24.
W.
Han
and
K.
Schulten
, “
Fibril elongation by Aβ17–42: Kinetic network analysis of hybrid-resolution molecular dynamics simulations
,”
J. Am. Chem. Soc.
136
(
35
),
12450
12460
(
2014
).
25.
C.
Wu
and
J.-E.
Shea
, “
Coarse-grained models for protein aggregation
,”
Curr. Opin. Struct. Biol.
21
(
2
),
209
220
(
2011
).
26.
A.
Morriss-Andrews
and
J.-E.
Shea
, “
Computational studies of protein aggregation: Methods and applications
,”
Annu. Rev. Phys. Chem.
66
,
643
666
(
2015
).
27.
C.
Guo
 et al., “
Expanding the nanoarchitectural diversity through aromatic di- and tri-peptide coassembly: Nanostructures and molecular mechanisms
,”
ACS Nano
10
(
9
),
8316
8324
(
2016
).
28.
F.
Noé
 et al., “
Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations
,”
Proc. Natl. Acad. Sci. U. S. A.
106
(
45
),
19011
19016
(
2009
).
29.
W.
E
and
E.
Vanden-Eijnden
, “
Towards a theory of transition paths
,”
J. Stat. Phys.
123
(
3
),
503
523
(
2006
).
30.
P.
Metzner
,
C.
Schutte
, and
E.
Vanden-Eijnden
, “
Transition path theory for Markov jump processes
,”
Multiscale Model. Simul.
7
(
3
),
1192
1219
(
2009
).
31.
J. D.
Chodera
 et al., “
Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics
,”
J. Chem. Phys.
126
(
15
),
155101
(
2007
).
32.
F.
Noé
and
S.
Fischer
, “
Transition networks for modeling the kinetics of conformational change in macromolecules
,”
Curr. Opin. Struct. Biol.
18
(
2
),
154
162
(
2008
).
33.
J. H.
Prinz
 et al., “
Markov models of molecular kinetics: Generation and validation
,”
J. Chem. Phys.
134
(
17
),
174105
(
2011
).
34.
A. C.
Pan
and
B.
Roux
, “
Building Markov state models along pathways to determine free energies and rates of transitions
,”
J. Chem. Phys.
129
(
6
),
064107
(
2008
).
35.
N. V.
Buchete
and
G.
Hummer
, “
Coarse master equations for peptide folding dynamics
,”
J. Phys. Chem. B
112
(
19
),
6057
6069
(
2008
).
36.
X.
Huang
 et al., “
Constructing multi-resolution Markov state models (MSMs) to elucidate RNA hairpin folding mechanisms
,”
Pac. Symp. Biocomput.
2010
,
228
239
.
37.
W. C.
Swope
,
J. W.
Pitera
, and
F.
Suits
, “
Describing protein folding kinetics by molecular dynamics simulations. 1. Theory
,”
J. Phys. Chem. B
108
(
21
),
6571
6581
(
2004
).
38.
C.
Schutte
 et al., “
A direct approach to conformational dynamics based on hybrid Monte Carlo
,”
J. Comput. Phys.
151
(
1
),
146
168
(
1999
).
39.
A.
Vitalis
and
A.
Caflisch
, “
Efficient construction of mesostate networks from molecular dynamics trajectories
,”
J. Chem. Theory Comput.
8
(
3
),
1108
1120
(
2012
).
40.
R.
Zwanzig
, “
From classical dynamics to continuous-time random-walks
,”
J. Stat. Phys.
30
(
2
),
255
262
(
1983
).
41.
F.
Noé
 et al., “
Hierarchical analysis of conformational dynamics in biomolecules: Transition networks of metastable states
,”
J. Chem. Phys.
126
(
15
),
155102
(
2007
).
42.
Y.
Yao
 et al., “
Hierarchical Nyström methods for constructing Markov state models for conformational dynamics
,”
J. Chem. Phys.
138
(
17
),
174106
(
2013
).
43.
C. R.
Schwantes
and
V. S.
Pande
, “
Improvements in Markov state model construction reveal many non-native interactions in the folding of NTL9
,”
J. Chem. Theory Comput.
9
(
4
),
2000
2009
(
2013
).
44.
G. R.
Bowman
,
L.
Meng
, and
X.
Huang
, “
Quantitative comparison of alternative methods for coarse-graining biological networks
,”
J. Chem. Phys.
139
(
12
),
121905
(
2013
).
45.
G. R.
Bowman
,
X. H.
Huang
, and
V. S.
Pande
, “
Using generalized ensemble simulations and Markov state models to identify conformational states
,”
Methods
49
(
2
),
197
201
(
2009
).
46.
W.
Zheng
 et al., “
Simulating replica exchange simulations of protein folding with a kinetic network model
,”
Proc. Natl. Acad. Sci. U. S. A.
104
(
39
),
15340
15345
(
2007
).
47.
F.
Nuske
 et al., “
Variational approach to molecular kinetics
,”
J. Chem. Theory Comput.
10
(
4
),
1739
1752
(
2014
).
48.
G.
Pérez-Hernández
 et al., “
Identification of slow molecular order parameters for Markov model construction
,”
J. Chem. Phys.
139
(
1
),
015102
(
2013
).
49.
O.
Lemke
and
B. G.
Keller
, “
Density-based cluster algorithms for the identification of core sets
,”
J. Chem. Phys.
145
(
16
),
164104
(
2016
).
50.
H.
Wan
,
G.
Zhou
, and
V. A.
Voelz
, “
A maximum-caliber approach to predicting perturbed folding kinetics due to mutations
,”
J. Chem. Theory Comput.
12
(
12
),
5768
5776
(
2016
).
51.
V. A.
Voelz
 et al., “
Molecular simulation of ab initio protein folding for a millisecond folder NTL9(1-39)
,”
J. Am. Chem. Soc.
132
(
5
),
1526
1528
(
2010
).
52.
L. T.
Da
,
D.
Wang
, and
X.
Huang
, “
Dynamics of pyrophosphate ion release and its coupled trigger loop motion from closed to open state in RNA polymerase. II
,”
J. Am. Chem. Soc.
134
(
4
),
2399
2406
(
2012
).
53.
Q.
Qiao
,
G. R.
Bowman
, and
X. H.
Huang
, “
Dynamics of an intrinsically disordered protein reveal metastable conformations that potentially seed aggregation
,”
J. Am. Chem. Soc.
135
(
43
),
16092
16101
(
2013
).
54.
S.
Gu
 et al., “
Quantitatively characterizing the ligand binding mechanisms of choline binding protein using Markov state model analysis
,”
PLoS Comput. Biol.
10
(
8
),
e1003767
(
2014
).
55.
W.
Zhuang
 et al., “
Simulating the t-jump-triggered unfolding dynamics of trpzip2 peptide and its time-resolved IR and two-dimensional IR signals using the Markov state model approach
,”
J. Phys. Chem. B
115
(
18
),
5415
5424
(
2011
).
56.
D.-A.
Silva
 et al., “
Millisecond dynamics of RNA polymerase II translocation at atomic resolution
,”
Proc. Natl. Acad. Sci. U. S. A.
111
(
21
),
7665
7670
(
2014
).
57.
H.
Jiang
 et al., “
Markov state models reveal a two-step mechanism of miRNA loading into the human Argonaute protein: Selective binding followed by structural re-arrangement
,”
PLoS Comput. Biol.
11
(
7
),
e1004404
(
2015
).
58.
G. R.
Bowman
,
V. A.
Voelz
, and
V. S.
Pande
, “
Taming the complexity of protein folding
,”
Curr. Opin. Struct. Biol.
21
(
1
),
4
11
(
2011
).
59.
F.
Morcos
 et al., “
Modeling conformational ensembles of slow functional motions in Pin1-WW
,”
PLoS Comput. Biol.
6
(
12
),
e1001015
(
2010
).
60.
I.
Buch
,
T.
Giorgino
, and
G.
De Fabritiis
, “
Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations
,”
Proc. Natl. Acad. Sci. U. S. A.
108
(
25
),
10184
10189
(
2011
).
61.
J. D.
Chodera
and
F.
Noé
, “
Markov state models of biomolecular conformational dynamics
,”
Curr. Opin. Struct. Biol.
25
,
135
144
(
2014
).
62.
G. R.
Bowman
 et al., “
Progress and challenges in the automated construction of Markov state models for full protein systems
,”
J. Chem. Phys.
131
,
124101
(
2009
).
63.
M.
Schor
 et al., “
Shedding light on the dock–lock mechanism in amyloid fibril growth using Markov state models
,”
J. Phys. Chem. Lett.
6
(
6
),
1076
1081
(
2015
).
64.
Q.
Qiao
 et al., “
Dynamics of the conformational transitions during the dimerization of an intrinsically disordered peptide: A case study on the human islet amyloid polypeptide fragment
,”
Phys. Chem. Chem. Phys.
18
(
43
),
29892
29904
(
2016
).
65.
N.
Plattner
and
F.
Noé
, “
Protein conformational plasticity and complex ligand-binding kinetics explored by atomistic simulations and Markov models
,”
Nat. Commun.
6
,
7653
(
2015
).
66.
A.
Gupta
 et al., “
Free network measurement for adaptive virtualized distributed computing
,” in
Parallel and Distributed Processing Symposium, 2006, IPDPS, 2006, 20th International
(
IEEE
,
2006
).
67.
W.
E
and
E.
Vanden-Eijnden
, “
Transition-path theory and path-finding algorithms for the study of rare events
,”
Annu. Rev. Phys. Chem.
61
,
391
(
2010
).
68.
X.
Zheng
 et al., “
Kinetics-controlled amphiphiles self-assembly processes
,”
J. Phys. Chem. Lett.
8
,
1798
(
2017
).
69.
A. I.
Ng
,
M.
Jordan
, and
Y.
Weiss
, “
On spectral clustering: Analysis and an algorithm
,”
Adv. Neural Inf. Proc. Syst.
14
,
849
856
(
2001
).
70.
Y.
Zhao
 et al., “
A fast parallel clustering algorithm for molecular simulation trajectories
,”
J. Comput. Chem.
34
(
2
),
95
104
(
2013
).
71.
F. K.
Sheong
 et al., “
Automatic state partitioning for multibody systems (APM): An efficient algorithm for constructing Markov state models to elucidate conformational dynamics of multibody systems
,”
J. Chem. Theory Comput.
11
(
1
),
17
27
(
2014
).
72.
S.
Liu
 et al., “
Adaptive partitioning by local density-peaks: An efficient density-based clustering algorithm for analyzing molecular dynamics trajectories
,”
J. Comput. Chem.
38
(
3
),
152
160
(
2017
).
73.
J. M.
Wang
 et al., “
Development and testing of a general amber force field
,”
J. Comput. Chem.
25
(
9
),
1157
1174
(
2004
).
74.
P. C.
Hariharan
and
J. A.
Pople
, “
The influence of polarization functions on molecular orbital hydrogenation energies
,”
Theor. Chim. Acta
28
(
3
),
213
222
(
1973
).
75.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
(
7
),
5648
5652
(
1993
).
76.
P. J.
Stephens
 et al., “
Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields: A comparison of local, nonlocal, and hybrid density functionals
,”
J. Phys. Chem.
99
,
16883
(
1995
), Army Research Lab Aberdeen Proving Ground MD.
77.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
(
2
),
785
(
1988
).
78.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
J. A.
Montgomery
,
T.
Vreven
,
K. N.
Kudin
,
J. C.
Burant
,
J. M.
Millam
,
S. S.
Iyengar
,
J.
Tomasi
,
V.
Barone
,
B.
Mennucci
,
M.
Cossi
,
G.
Scalmani
,
N.
Rega
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
M.
Klene
,
X.
Li
,
J. E.
Knox
,
H. P.
Hratchian
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
P. Y.
Ayala
,
K.
Morokuma
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
V. G.
Zakrzewski
,
S.
Dapprich
,
A. D.
Daniels
,
M. C.
Strain
,
O.
Farkas
,
D. K.
Malick
,
A. D.
Rabuck
,
K.
Raghavachari
,
J. B.
Foresman
,
J. V.
Ortiz
,
Q.
Cui
,
A. G.
Baboul
,
S.
Clifford
,
J.
Cioslowski
,
B. B.
Stefanov
,
G.
Liu
,
A.
Liashenko
,
P.
Piskorz
,
I.
Komaromi
,
R. L.
Martin
,
D. J.
Fox
,
T.
Keith
,
A.
Laham
,
C. Y.
Peng
,
A.
Nanayakkara
,
M.
Challacombe
,
P. M. W.
Gill
,
B.
Johnson
,
W.
Chen
,
M. W.
Wong
,
C.
Gonzalez
, and
J. A.
Pople
, gaussian 03, Revision E.01,
Gaussian, Inc.
,
2003
.
79.
W. L.
Jorgensen
 et al., “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
(
2
),
926
935
(
1983
).
80.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
, “
Canonical sampling through velocity rescaling
,”
J. Chem. Phys.
126
(
1
),
014101
(
2007
).
81.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
(
12
),
7182
7190
(
1981
).
82.
U.
Essmann
 et al., “
A smooth particle mesh Ewald method
,”
J. Chem. Phys.
103
(
19
),
8577
8593
(
1995
).
83.
B.
Hess
 et al., “
Lincs: A linear constraint solver for molecular simulations
,”
J. Comput. Chem.
18
(
12
),
1463
1472
(
1997
).
84.
B.
Hess
 et al., “
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation
,”
J. Chem. Theory Comput.
4
(
3
),
435
447
(
2008
).

Supplementary Material

You do not currently have access to this content.