A general theoretical framework is derived for the recently developed multi-state trajectory (MST) approach from the time dependent Schrödinger equation, resulting in equations of motion for coupled nuclear-electronic dynamics equivalent to Hamilton dynamics or Heisenberg equation based on a new multistate Meyer-Miller (MM) model. The derived MST formalism incorporates both diabatic and adiabatic representations as limiting cases and reduces to Ehrenfest or Born-Oppenheimer dynamics in the mean-field or the single-state limits, respectively. In the general multistate formalism, nuclear dynamics is represented in terms of a set of individual state-specific trajectories, while in the active state trajectory (AST) approximation, only one single nuclear trajectory on the active state is propagated with its augmented images running on all other states. The AST approximation combines the advantages of consistent nuclear-coupled electronic dynamics in the MM model and the single nuclear trajectory in the trajectory surface hopping (TSH) treatment and therefore may provide a potential alternative to both Ehrenfest and TSH methods. The resulting algorithm features in a consistent description of coupled electronic-nuclear dynamics and excellent numerical stability. The implementation of the MST approach to several benchmark systems involving multiple nonadiabatic transitions and conical intersection shows reasonably good agreement with exact quantum calculations, and the results in both representations are similar in accuracy. The AST treatment also reproduces the exact results reasonably, sometimes even quantitatively well, with a better performance in the adiabatic representation.

1.
W. H.
Miller
, “
Electronically nonadiabatic dynamics via semiclassical initial value methods
,”
J. Phys. Chem. A
113
,
1405
1415
(
2009
).
2.
J. C.
Tully
, “
Perspective: Nonadiabatic dynamics theory
,”
J. Chem. Phys.
137
,
22A301
(
2012
).
3.
L.
Wang
,
A.
Akimov
, and
O. V.
Prezhdo
, “
Recent progress in surface hopping: 2011−2015
,”
J. Phys. Chem. Lett.
7
,
2100
2112
(
2016
).
4.
P.
Ehrenfest
, “
Bemerkung über die angenäherte gültigkeit der klassischen mechanik innerhalb der quantenmechanik
,”
Z. Phys.
45
,
455
457
(
1927
).
5.
G. D.
Billing
, “
On the applicability of the classical trajectory equations in inelastic scattering theory
,”
Chem. Phys. Lett.
30
,
391
393
(
1975
).
6.
A. W.
Jasper
,
S.
Nangia
,
C.
Zhu
, and
D. G.
Truhlar
, “
Non-Born-Oppenheimer molecular dynamics
,”
Acc. Chem. Res.
39
,
101
108
(
2006
).
7.
S. J.
Cotton
and
W. H.
Miller
, “
Symmetrical windowing for quantum states in quasi-classical trajectory simulations
,”
J. Phys. Chem. A
117
,
7190
7194
(
2013
).
8.
S. J.
Cotton
and
W. H.
Miller
, “
Symmetrical windowing for quantum states in quasi-classical trajectory simulations: Application to electronically non-adiabatic processes
,”
J. Chem. Phys.
139
,
234112
(
2013
).
9.
W. H.
Miller
and
S. J.
Cotton
, “
Communication: Note on detailed balance in symmetrical quasi-classical models for electronically non-adiabatic dynamics
,”
J. Chem. Phys.
142
,
131103
(
2015
).
10.
W. H.
Miller
and
S. J.
Cotton
, “
Communication: Wigner functions in action-angle variables, Bohr-Sommerfeld quantization, the Heisenberg correspondence principle, and a symmetrical quasiclassical approach to the full electronic density matrix
,”
J. Chem. Phys.
145
,
081102
(
2016
).
11.
H. D.
Meyer
and
W. H.
Miller
, “
A classical analog for electronic degrees of freedom in nonadiabatic collision processes
,”
J. Chem. Phys.
70
,
3214
3223
(
1979
).
12.
J. C.
Tully
, “
Molecular dynamics with electronic transitions
,”
J. Chem. Phys.
93
,
1061
1071
(
1990
).
13.
J. C.
Tully
, “
Mixed quantum classical dynamics
,”
Faraday Discuss.
110
,
407
419
(
1998
).
14.
M. D.
Hack
and
D. G.
Truhlar
, “
Nonadiabatic trajectories at an exhibition
,”
J. Phys. Chem. A
104
,
7917
7926
(
2000
).
15.
B. J.
Schwartz
,
E. R.
Bittner
,
O. V.
Prezhdo
, and
P. J.
Rossky
, “
Quantum decoherence and the isotope effect in condensed phase nonadiabatic molecular dynamics simulations
,”
J. Chem. Phys.
104
,
5942
5955
(
1994
).
16.
O. V.
Prezhdo
and
P. J.
Rossky
, “
Evaluation of quantum transition rates from quantum-classical molecular dynamics simulations
,”
J. Chem. Phys.
107
,
5863
5878
(
1997
).
17.
J. E.
Subotnik
and
N.
Shenvi
, “
A new approach to decoherence and momentum rescaling in the surface hopping algorithm
,”
J. Chem. Phys.
134
,
024105
(
2011
).
18.
N.
Shenvi
,
J. E.
Subotnik
, and
W.
Yang
, “
Simultaneous-trajectory surface hopping: A parameter-free algorithm for implementing decoherence in nonadiabatic dynamics
,”
J. Chem. Phys.
134
,
144102
(
2011
).
19.
N.
Shenvi
,
J. E.
Subotnik
, and
W.
Yang
, “
Phase-corrected surface hopping: Correcting the phase evolution of the electronic wavefunction
,”
J. Chem. Phys.
135
,
024101
(
2011
).
20.
J. E.
Subotnik
,
W.
Ouyang
, and
B. R.
Landry
, “
Can we derive Tully’s surface-hopping algorithm from the semiclassical quantum Liouville equation? Almost, but only with decoherence
,”
J. Chem. Phys.
139
,
214107
(
2013
).
21.
B. F. E.
Curchod
and
I.
Tavernelli
, “
On trajectory-based nonadiabatic dynamics: Bohmian dynamics versus trajectory surface hopping
,”
J. Chem. Phys.
138
,
184112
(
2013
).
22.
L.
Wang
,
A. E.
Sifain
, and
O. V.
Prezhdo
, “
Fewest switches surface hopping in Liouville space
,”
J. Phys. Chem. Lett.
6
,
3827
3833
(
2015
).
23.
E.
Neria
and
A.
Nitzan
, “
Semiclassical evaluation of nonadiabatic rates in condensed phases
,”
J. Chem. Phys.
99
,
1109
1123
(
1993
).
24.
R.
Kapral
and
G.
Ciccotti
, “
Mixed quantum-classical dynamics
,”
J. Chem. Phys.
110
,
8919
8929
(
1999
).
25.
R.
Kapral
, “
Progress in the theory of mixed quantum-classical dynamics
,”
Annu. Rev. Phys. Chem.
57
,
129
157
(
2006
).
26.
C. C.
Martens
and
J.-Y.
Fang
, “
Semiclassical-limit molecular dynamics on multiple electronic surfaces
,”
J. Chem. Phys.
106
,
4918
4930
(
1997
).
27.
C. C.
Martens
, “
Communication: Fully coherent quantum state hopping
,”
J. Chem. Phys.
143
,
141101
(
2015
).
28.
J. C.
Burant
and
J. C.
Tully
, “
Nonadiabatic dynamics via the classical limit Schrödinger equation
,”
J. Chem. Phys.
112
,
6097
6103
(
2000
).
29.
F.
Agostini
,
A.
Abedi
, and
E. K. U.
Gross
, “
Classical nuclear motion coupled to electronic non-adiabatic transitions
,”
J. Chem. Phys.
141
,
214101
(
2014
).
30.
T. J.
Martinez
,
M.
Ben-Nun
, and
R. D.
Levine
, “
Multi-electronic-state molecular dynamics: A wave function approach with applications
,”
J. Phys. Chem.
100
,
7884
(
1996
).
31.
M.
Ben-Nun
and
T. J.
Martinez
, “
A multiple spawning approach to tunneling dynamics
,”
J. Chem. Phys.
112
,
6113
6121
(
2000
).
32.
T.
Yonehara
and
K. J.
Takatsuka
, “
Phase-space averaging and natural branching of nuclear paths for nonadiabatic electron wavepacket dynamics
,”
J. Chem. Phys.
129
,
134109
(
2008
).
33.
G.
Tao
, “
A multi-state trajectory method for non-adiabatic dynamics simulations
,”
J. Chem. Phys.
144
,
094108
(
2016
).
34.
G.
Tao
, “
Nonequilibrium electron-coupled lithium ion diffusion in LiFePO4: Nonadiabatic dynamics with multistate trajectory approach
,”
J. Phys. Chem. C
120
,
6938
6952
(
2016
).
35.
R.
Baer
,
D. M.
Charutz
,
R.
Kosloff
, and
M.
Baer
, “
A study of conical intersection effects on scattering processes: The validity of adiabatic single-surface approximations within a quasi-Jahn–Teller model
,”
J. Chem. Phys.
105
,
9141
9152
(
1996
).
36.
P.
Puzari
,
B.
Sarkar
, and
S.
Adhikari
, “
Quantum-classical dynamics of scattering processes in adiabatic and diabatic representations
,”
J. Chem. Phys.
121
,
707
721
(
2004
).
37.
N.
Makri
and
W. H.
Miller
, “
Time-dependent self-consistent field (TDSCF) approximation for a reaction coordinate coupled to a harmonic bath: Single and multiple configuration treatments
,”
J. Chem. Phys.
87
,
5781
5787
(
1987
).
38.
G.
Stock
, “
A semiclassical self-consistent-field approach to dissipative dynamics: The Spin-Boson problem
,”
J. Chem. Phys.
103
,
1561
1573
(
1999
).
39.
G.
Stock
and
M.
Thoss
, “
Semiclassical description of nonadiabatic quantum dynamics
,”
Phys. Rev. Lett.
78
,
578
581
(
1997
).
40.
G.
Tao
and
W. H.
Miller
, in
Abstracts of Papers, 242nd National Meeting of the American Chemical Society, Denver, CO, August 28-September 1, 2011
(
American Chemical Society
,
Washington, DC
,
2011
), PHYS 371.
41.
G.
Tao
, “
Coherence controlled non-adiabatic dynamics via state space decomposition: A consistent way to incorporate Ehrenfest and Born-Oppenheimer-like treatments on nuclear motion
,”
J. Phys. Chem. Lett.
7
,
4335
4339
(
2016
).
42.
G.
Tao
and
N.
Shen
, “
Mapping state space to quasiclassical trajectory dynamics in coherence-controlled nonadiabatic simulations for condensed phase problems
,”
J. Phys. Chem. A
121
,
1734
1747
(
2017
).
43.
D. T.
Colbert
and
W. H.
Miller
, “
A novel discrete variable representation for quantum mechanical reactive scattering via the S-matrix Kohn method
,”
J. Chem. Phys.
96
,
1982
1991
(
1992
).
44.
W. H.
Miller
, “
The semiclassical initial value representation: A potentially practical way for adding quantum effects to classical molecular dynamics simulations
,”
J. Phys. Chem. A
105
,
2942
2955
(
2001
).

Supplementary Material

You do not currently have access to this content.