A new model, termed D4, for the efficient computation of molecular dipole-dipole dispersion coefficients is presented. As in the related, well established D3 scheme, these are obtained as a sum of atom-in-molecule dispersion coefficients over atom pairs. Both models make use of dynamic polarizabilities obtained from first-principles time-dependent density functional theory calculations for atoms in different chemical environments employing fractional atomic coordination numbers for interpolation. Different from the D3 model, the coefficients are obtained on-the-fly by numerical Casimir-Polder integration of the dynamic, atomic polarizabilities α(iω). Most importantly, electronic density information is now incorporated via atomic partial charges computed at a semi-empirical quantum mechanical tight-binding level, which is used to scale the polarizabilities. Extended statistical measures show that errors for dispersion coefficients with the proposed D4 method are significantly lower than with D3 and other, computationally more involved schemes. Alongside, accurate isotropic charge and hybridization dependent, atom-in-molecule static polarizabilities are obtained with an unprecedented efficiency. Damping function parameters are provided for three standard density functionals, i.e., TPSS, PBE0, and B3LYP, allowing evaluation of the new DFT-D4 model for common non-covalent interaction energy benchmark sets.

1.
R. G.
Parr
and
Y.
Weitao
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
1994
), Vol. 16.
2.
W.
Kohn
, “
Nobel lecture: Electronic structure of matterwave functions and density functionals
,”
Rev. Mod. Phys.
71
,
1253
(
1999
).
3.
S.
Grimme
,
A.
Hansen
,
J. G.
Brandenburg
, and
C.
Bannwarth
, “
Dispersion-corrected mean-field electronic structure methods
,”
Chem. Rev.
116
,
5105
5154
(
2016
).
4.
R.
Eisenschitz
and
F.
London
, “
Über das verhältnis der van der Waalsschen kräfte zu den homöopolaren bindungskräften
,”
Z. Phys.
60
,
491
527
(
1930
).
5.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
6.
A.
Tkatchenko
and
M.
Scheffler
, “
Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data
,”
Phys. Rev. Lett.
102
,
073005
(
2009
).
7.
A. D.
Becke
and
E. R.
Johnson
, “
Exchange-hole dipole moment and the dispersion interaction
,”
J. Chem. Phys.
122
,
154104
(
2005
).
8.
A. D.
Becke
and
E. R.
Johnson
, “
A density-functional model of the dispersion interaction
,”
J. Chem. Phys.
123
,
154101
(
2005
).
9.
A. D.
Becke
and
E. R.
Johnson
, “
Exchange-hole dipole moment and the dispersion interaction: High-order dispersion coefficients
,”
J. Chem. Phys.
124
,
014104
(
2006
).
10.
T.
Sato
and
H.
Nakai
, “
Density functional method including weak interactions: Dispersion coefficients based on the local response approximation
,”
J. Chem. Phys.
131
,
224104
(
2009
).
11.
T.
Sato
and
H.
Nakai
, “
Local response dispersion method. II. Generalized multicenter interactions
,”
J. Chem. Phys.
133
,
194101
(
2010
).
12.
M.
Dion
,
H.
Rydberg
,
E.
Schröder
,
D. C.
Langreth
, and
B. I.
Lundqvist
, “
Van der Waals density functional for general geometries
,”
Phys. Rev. Lett.
92
,
246401
(
2004
).
13.
M.
Dion
,
H.
Rydberg
,
E.
Schröder
,
D. C.
Langreth
, and
B. I.
Lundqvist
, “
Erratum: Van der Waals density functional for general geometries [Phys. Rev. Lett. 92, 246401 (2004)]
,”
Phys. Rev. Lett.
95
,
109902
(
2005
).
14.
K.
Berland
and
P.
Hyldgaard
, “
Exchange functional that tests the robustness of the plasmon description of the van der Waals density functional
,”
Phys. Rev. B
89
,
035412
(
2014
).
15.
D.
Langreth
,
B. I.
Lundqvist
,
S. D.
Chakarova-Käck
,
V.
Cooper
,
M.
Dion
,
P.
Hyldgaard
,
A.
Kelkkanen
,
J.
Kleis
,
L.
Kong
, and
S.
Li
, “
A density functional for sparse matter
,”
J. Phys.: Condens. Matter
21
,
084203
(
2009
).
16.
K.
Berland
,
V. R.
Cooper
,
K.
Lee
,
E.
Schröder
,
T.
Thonhauser
,
P.
Hyldgaard
, and
B. I.
Lundqvist
, “
Van der Waals forces in density functional theory: A review of the vdW-DF method
,”
Rep. Prog. Phys.
78
,
066501
(
2015
).
17.
G. A.
DiLabio
and
A.
Otero-de-la-Roza
, “
Noncovalent interactions in density-functional theory
,” in
Wiley Reviews in Computational Chemistry
, Vol. 29 (
Wiley
,
2014
), p. 1.
18.
O. A.
Vydrov
and
T.
Van Voorhis
, “
Improving the accuracy of the nonlocal van der Waals density functional with minimal empiricism
,”
J. Chem. Phys.
130
,
104105
(
2009
).
19.
O. A.
Vydrov
and
T.
Van Voorhis
, “
Nonlocal van der Waals density functional made simple
,”
Phys. Rev. Lett.
103
,
063004
(
2009
).
20.
S.
Ehrlich
,
J.
Moellmann
,
W.
Reckien
,
T.
Bredow
, and
S.
Grimme
, “
System-dependent dispersion coefficients for the DFT-D3 treatment of adsorption processes on ionic surfaces
,”
ChemPhysChem
12
,
3414
3420
(
2011
).
21.
A.
Hansen
,
C.
Bannwarth
,
S.
Grimme
,
P.
Petrović
,
C.
Werlé
, and
J.-P.
Djukic
, “
The thermochemistry of London dispersion-driven transition metal reactions: Getting the ‘right answer for the right reason’
,”
ChemistryOpen
3
,
177
189
(
2014
).
22.
M.
Stöhr
,
G. S.
Michelitsch
,
J. C.
Tully
,
K.
Reuter
, and
R. J.
Maurer
, “
Communication: Charge-population based dispersion interactions for molecules and materials
,”
J. Chem. Phys.
144
,
151101
(
2016
).
23.
R.
Mulliken
, “
Electronic population analysis on LCAO–MO molecular wave functions. II. Overlap populations, bond orders, and covalent bond energies
,”
J. Chem. Phys.
23
,
1841
1846
(
1955
).
24.
S.
Grimme
and
C.
Bannwarth
, “
Ultra-fast computation of electronic spectra for large systems by tight-binding based simplified Tamm-Dancoff approximation (sTDA-xTB)
,”
J. Chem. Phys.
145
,
054103
(
2016
).
25.
S.
Grimme
,
C.
Bannwarth
, and
P.
Shushkov
, “
A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and non-covalent interactions of large molecular systems parameterized for all spd-block elements (z = 1-86)
,”
J. Chem. Theory Comput.
13
,
1989
2009
(
2017
).
26.
R.
Petraglia
,
S. N.
Steinmann
, and
C.
Corminboeuf
, “
A fast charge-dependent atom-pairwise dispersion correction for DFTB3
,”
Int. J. Quantum Chem.
115
,
1265
1272
(
2015
).
27.
M.
Elstner
,
D.
Porezag
,
G.
Jungnickel
,
J.
Elsner
,
M.
Haugk
,
Th.
Frauenheim
,
S.
Suhai
, and
G.
Seifert
, “
Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties
,”
Phys. Rev. B
58
,
7260
7268
(
1998
).
28.
Y.
Yang
,
H.
Yu
,
D.
York
,
Q.
Cui
, and
M.
Elstner
, “
Extension of the self-consistent-charge density-functional tight-binding method: Third-order expansion of the density functional theory total energy and introduction of a modified effective Coulomb interaction
,”
J. Phys. Chem. A
111
,
10861
10873
(
2007
).
29.
R.
Sedlak
and
J.
Řezáč
, “
Empirical D3 dispersion as a replacement for ab initio dispersion terms in density functional theory-based symmetry-adapted perturbation theory
,”
J. Chem. Theory Comput.
13
,
1638
1646
(
2017
).
30.
S.
Grimme
,
C.
Bannwarth
,
E.
Caldeweyher
,
J.
Pisarek
, and
A.
Hansen
, “
A general intermolecular force field based on tight-binding quantum chemical calculations
,”
J. Chem. Phys.
147
,
161708
(
2017
).
31.
H. B. G.
Casimir
and
D.
Polder
, “
The influence of retardation on the London-van der Waals forces
,”
Phys. Rev.
73
,
360
372
(
1948
).
32.
K. B.
Wiberg
, “
Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane
,”
Tetrahedron
24
,
1083
1096
(
1968
).
33.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
,
1456
1465
(
2011
).
34.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
, “
Climbing the density functional ladder: Nonempirical meta–generalized gradient approximation designed for molecules and solids
,”
Phys. Rev. Lett.
91
,
146401
(
2003
).
35.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
5652
(
1993
).
36.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
, “
Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields
,”
J. Phys. Chem.
98
,
11623
11627
(
1994
).
37.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
,
6158
6170
(
1999
).
38.
B.
Brauer
,
M. K.
Kesharwani
,
S.
Kozuch
, and
J. M. L.
Martin
, “
The S66x8 benchmark for noncovalent interactions revisited: Explicitly correlated ab initio methods and density functional theory
,”
Phys. Chem. Chem. Phys.
18
,
20905
20925
(
2016
).
39.
L.
Gráfová
,
M.
Pitoňák
,
J.
Řezáč
, and
P.
Hobza
, “
Comparative study of selected wave function and density functional methods for noncovalent interaction energy calculations using the extended S22 data set
,”
J. Chem. Theory Comput.
6
,
2365
2376
(
2010
).
40.
D. E.
Taylor
,
J. G.
Ángyán
,
G.
Galli
,
C.
Zhang
,
F.
Gygi
,
K.
Hirao
,
J. W.
Song
,
K.
Rahul
,
O.
Anatole von Lilienfeld
,
R.
Podeszwa
 et al, “
Blind test of density-functional-based methods on intermolecular interaction energies
,”
J. Chem. Phys.
145
,
124105
(
2016
).
41.
turbomole V7.0,
University of Karlsruhe, Forschungszentrum Karlsruhe GmbH, TURBOMOLE GmbH
,
Karlsruhe, Germany
,
2015
, http://www.turbomole.com.
42.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
, “
Electronic structure calculations on workstation computers: The program system turbomole
,”
Chem. Phys. Lett.
162
,
165
169
(
1989
).
43.
F.
Furche
,
R.
Ahlrichs
,
C.
Hättig
,
W.
Klopper
,
M.
Sierka
, and
F.
Weigend
, “
Turbomole
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
91
100
(
2014
).
44.
O.
Vahtras
,
J.
Almlöf
, and
M.
Feyereisen
, “
Integral approximations for LCAO-SCF calculations
,”
Chem. Phys. Lett.
213
,
514
518
(
1993
).
45.
K.
Eichkorn
,
F.
Weigend
,
O.
Treutler
, and
R.
Ahlrichs
, “
Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials
,”
Theor. Chem. Acc.
97
,
119
124
(
1997
).
46.
F.
Weigend
, “
Accurate Coulomb-fitting basis sets for H to Rn
,”
Phys. Chem. Chem. Phys.
8
,
1057
1065
(
2006
).
47.
S.
Grimme
, “
Density functional theory with London dispersion corrections
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
,
211
228
(
2011
).
48.
S.
Grimme
, “
Accurate description of van der Waals complexes by density functional theory including empirical corrections
,”
J. Comput. Chem.
25
,
1463
1473
(
2004
).
49.
O. A.
von Lilienfeld
,
I.
Tavernelli
,
U.
Röthlisberger
, and
D.
Sebastiani
, “
Optimization of effective atom centered potentials for London dispersion forces in density functional theory
,”
Phys. Rev. Lett.
93
,
153004
(
2004
).
50.
Q.
Wu
and
W.
Yang
, “
Empirical correction to density functional theory for van der Waals interactions
,”
J. Chem. Phys.
116
,
515
524
(
2002
).
51.
S. N.
Steinmann
,
G.
Csonka
, and
C.
Corminboeuf
, “
Unified inter- and intramolecular dispersion correction formula for generalized gradient approximation density functional theory
,”
J. Chem. Theory Comput.
5
,
2950
2958
(
2009
).
52.
U.
Zimmerli
,
M.
Parrinello
, and
P.
Koumoutsakos
, “
Dispersion corrections to density functionals for water aromatic interactions
,”
J. Chem. Phys.
120
,
2693
2699
(
2004
).
53.
S. N.
Steinmann
and
C.
Corminboeuf
, “
A system-dependent density-based dispersion correction
,”
J. Chem. Theory Comput.
6
,
1990
2001
(
2010
).
54.
S. N.
Steinmann
and
C.
Corminboeuf
, “
A generalized-gradient approximation exchange hole model for dispersion coefficients
,”
J. Chem. Phys.
134
,
044117
(
2011
).
55.
S. N.
Steinmann
and
C.
Corminboeuf
, “
Comprehensive benchmarking of a density-dependent dispersion correction
,”
J. Chem. Theory Comput.
7
,
3567
3577
(
2011
).
56.
A.
Tkatchenko
,
R. A.
DiStasio
,
R.
Car
, and
M.
Scheffler
, “
Accurate and efficient method for many-body van der Waals interactions
,”
Phys. Rev. Lett.
108
,
236402
(
2012
).
57.
T.
Bučko
,
S.
Lebègue
,
J.
Hafner
, and
J. G.
Ángyán
, “
Improved density dependent correction for the description of London dispersion forces
,”
J. Chem. Theory Comput.
9
,
4293
4299
(
2013
).
58.
F.
Yang
,
L. G.
Moss
, and
G. N.
Phillips
, “
The molecular structure of green fluorescent protein
,”
Nat. Biotechnol.
14
,
1246
1251
(
1996
).
59.
W. C.
Still
,
A.
Tempczyk
,
R. C.
Hawley
, and
T.
Hendrickson
, “
Semianalytical treatment of solvation for molecular mechanics and dynamics
,”
J. Am. Chem. Soc.
112
,
6127
6129
(
1990
).
60.
A.
Stone
,
The Theory of Intermolecular Forces
(
OUP
,
Oxford
,
2013
).
61.
T.
Risthaus
,
M.
Steinmetz
, and
S.
Grimme
, “
Implementation of nuclear gradients of range-separated hybrid density functionals and benchmarking on rotational constants for organic molecules
,”
J. Comput. Chem.
35
,
1509
1516
(
2014
).
62.
E. R.
Johnson
, “
Dependence of dispersion coefficients on atomic environment
,”
J. Chem. Phys.
135
,
234109
(
2011
).

Supplementary Material

You do not currently have access to this content.