Using computer simulations, we study the dynamics and interactions of interstitial particles in hard-sphere interstitial solid solutions. We calculate the free-energy barriers associated with their diffusion for a range of size ratios and densities. By applying classical transition state theory to these free-energy barriers, we predict the diffusion coefficients, which we find to be in good agreement with diffusion coefficients as measured using event-driven molecular dynamics simulations. These results highlight that transition state theory can capture the interstitial dynamics in the hard-sphere model system. Additionally, we quantify the interactions between the interstitials. We find that, apart from excluded volume interactions, the interstitial-interstitial interactions are almost ideal in our system. Lastly, we show that the interstitial diffusivity can be inferred from the large-particle fluctuations alone, thus providing an empirical relationship between the large-particle fluctuations and the interstitial diffusivity.

1.
W.
Hume-Rothery
,
The Structures of Alloys of Iron: An Elementary Introduction
(
Elsevier
,
Amsterdam
,
2013
).
2.
J.
Barrat
,
M.
Baus
, and
J. P.
Hansen
,
J. Phys. C: Solid State Phys.
20
,
1413
(
1987
).
3.
D. A.
Kofke
,
Mol. Simul.
7
,
285
(
1991
).
4.
X.
Cottin
and
P.
Monson
,
J. Chem. Phys.
99
,
8914
(
1993
).
5.
W.
Kranendonk
and
D.
Frenkel
,
Mol. Phys.
72
,
679
(
1991
).
6.
W.
Kranendonk
and
D.
Frenkel
,
J. Phys.: Condens. Matter
1
,
7735
(
1989
).
7.
W.
Kranendonk
and
D.
Frenkel
,
Mol. Phys.
72
,
699
(
1991
).
8.
L.
Filion
 et al,
Phys. Rev. Lett.
107
,
168302
(
2011
).
9.
J.
Tauber
,
R.
Higler
, and
J.
Sprakel
,
Proc. Natl. Acad. Sci. U. S. A.
113
,
13660
(
2016
).
10.
I. R.
de Anda
,
F.
Turci
,
R.
Sear
, and
C. P.
Royall
,
J. Chem. Phys.
147
,
124504
(
2017
).
11.
R.
Higler
and
J.
Sprakel
,
Sci. Rep.
7
,
12634
(
2017
).
12.
F. A.
Lavergne
,
S.
Diana
,
D. G.
Aarts
, and
R. P.
Dullens
,
Langmuir
32
,
12716
(
2016
).
13.
A.
van Blaaderen
and
P.
Wiltzius
,
Science
270
,
1177
(
1995
).
14.
E. R.
Weeks
 et al,
Science
287
,
627
(
2000
).
15.
W. K.
Kegel
and
A.
van Blaaderen
,
Science
287
,
290
(
2000
).
16.
U.
Gasser
 et al,
Science
292
,
258
(
2001
).
17.
S.
Auer
and
D.
Frenkel
,
Nature
409
,
1020
(
2001
).
18.
S.
Auer
and
D.
Frenkel
,
Phys. Rev. Lett.
91
,
015703
(
2003
).
19.
A.
Cacciuto
,
S.
Auer
, and
D.
Frenkel
,
Nature
428
,
404
(
2004
).
20.
V.
de Villeneuve
 et al,
J. Phys.: Condens. Matter
17
,
S3371
(
2005
).
21.
E.
Allahyarov
,
K.
Sandomirski
,
S.
Egelhaaf
, and
H.
Löwen
,
Nat. Commun.
6
,
7110
(
2015
).
22.
L.
Filion
and
M.
Dijkstra
,
Phys. Rev. E
79
,
046714
(
2009
).
23.
J. K.
Kummerfeld
,
T. S.
Hudson
, and
P.
Harrowell
,
J. Phys. Chem. B
112
,
10773
(
2008
).
24.
P. I.
O’Toole
and
T. S.
Hudson
,
J. Phys. Chem. C
115
,
19037
(
2011
).
25.
A. B.
Hopkins
,
Y.
Jiao
,
F. H.
Stillinger
, and
S.
Torquato
,
Phys. Rev. Lett.
107
,
125501
(
2011
).
26.
C.
Wert
,
Phys. Rev.
79
,
601
(
1950
).
27.
D. C.
Rapaport
 et al,
Comput. Phys.
10
,
456
(
1996
).
28.
B. J.
Alder
and
T. E.
Wainwright
,
J. Chem. Phys.
31
,
459
(
1959
).
29.
C.
Wert
and
C.
Zener
,
Phys. Rev.
76
,
1169
(
1949
).
30.
M.
Plischke
and
B.
Bergersen
,
Equilibrium Statistical Physics
(
World Scientific Publishing Co, Inc.
,
Singapore
,
1994
).
31.
H. A.
Al-Chalabi
and
E.
McLaughlin
,
Mol. Phys.
19
,
703
(
1970
).
32.
W.
Lechner
and
C.
Dellago
,
Soft Matter
5
,
2752
(
2009
).
33.
W.
Lechner
,
F.
Cinti
, and
G.
Pupillo
,
Phys. Rev. A
92
,
053625
(
2015
).
34.
B.
van der Meer
,
M.
Dijkstra
, and
L.
Filion
,
J. Chem. Phys.
146
,
244905
(
2017
).
You do not currently have access to this content.