Accurate simulations of open quantum system dynamics is a long standing issue in the field of chemical physics. Exact methods exist, but are costly, while perturbative methods are limited in their applicability. Recently a new black-box type method, called transfer tensor method (TTM), was proposed [J. Cerrillo and J. Cao, Phys. Rev. Lett. 112, 110401 (2014)]. It allows one to accurately simulate long time dynamics with a numerical cost of solving a time-convolution master equation, provided many initial system evolution trajectories are obtained from some exact method beforehand. The possible time-savings thus strongly depend on the ratio of total versus initial evolution lengths. In this work, we investigate the parameter regimes where an application of TTM would be most beneficial in terms of computational time. We identify several promising parameter regimes. Although some of them correspond to cases when perturbative theories could be expected to perform well, we find that the accuracy of such approaches depends on system parameters in a more complex way than it is commonly thought. We propose that the TTM should be applied whenever system evolution is expected to be long and accuracy of perturbative methods cannot be ensured or in cases when the system under consideration does not correspond to any single perturbative regime.

1.
U.
Weiss
,
Quantum Dissipative System
, 3rd ed. (
World Scientific
,
Singapore
,
2008
).
2.
H.-P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
(
Oxford University Press
,
New York
,
2002
).
3.
V.
May
and
O.
Kühn
,
Charge and Energy Transfer Dynamics in Molecular Systems
, 2nd ed. (
Wiley-VCH
,
Weinheim
,
2011
).
4.
L.
Valkunas
,
D.
Abramavicius
, and
T.
Mančal
,
Molecular Excitation Dynamics and Relaxation: Quantum Theory and Spectroscopy
(
Wiley-VCH
,
Berlin
,
2013
).
5.
S.
Huelga
and
M.
Plenio
,
Contemp. Phys.
54
,
181
(
2013
).
6.
Y.
Tanimura
,
J. Phys. Soc. Jpn.
75
,
082001
(
2006
).
7.
A.
Ishizaki
and
G. R.
Fleming
,
J. Chem. Phys.
130
,
234111
(
2009
).
8.
J. J.
Ding
,
J.
Xu
,
J.
Hu
,
R. X.
Xu
, and
Y.
Yan
,
J. Chem. Phys.
135
,
164107
(
2011
).
9.
D.
Suess
,
A.
Eisfeld
, and
W. T.
Strunz
,
Phys. Rev. Lett.
113
,
150403
(
2014
).
10.
D. E.
Makarov
and
N.
Makri
,
Chem. Phys. Lett.
221
,
482
(
1994
).
11.
N.
Makri
and
D. E.
Makarov
,
J. Chem. Phys.
102
,
4600
(
1995
).
12.
N.
Makri
and
D. E.
Makarov
,
J. Chem. Phys.
102
,
4611
(
1995
).
13.
J. T.
Stockburger
and
H.
Grabert
,
Phys. Rev. Lett.
88
,
170407
(
2002
).
14.
H.
Imai
,
Y.
Ohtsuki
, and
H.
Kono
,
Chem. Phys.
446
,
134
(
2015
).
15.
J.
Prior
,
A. W.
Chin
,
S. F.
Huelga
, and
M. B.
Plenio
,
Phys. Rev. Lett.
105
,
050404
(
2010
).
16.
17.
M.
Yang
and
G. R.
Fleming
,
Chem. Phys.
275
,
355
(
2002
).
18.
M.
Şener
,
J.
Strümpfer
,
J.
Hsin
,
D.
Chandler
,
S.
Scheuring
,
C. N.
Hunter
, and
K.
Schulten
,
ChemPhysChem
12
,
518
(
2011
).
19.
V.
Balevičius
, Jr.
,
A.
Gelzinis
,
D.
Abramavicius
, and
L.
Valkunas
,
J. Phys. Chem. B
117
,
11031
(
2013
).
20.
A. G.
Redfield
,
IBM J. Res. Develop.
1
,
19
(
1957
).
21.
D.
Egorova
,
A.
Kühl
, and
W.
Domcke
,
Chem. Phys.
268
,
105
(
2001
).
22.
V.
Novoderezhkin
,
J.
Salverda
,
H.
van Amerongen
, and
R.
van Grondelle
,
J. Phys. Chem. B
107
,
1893
(
2003
).
23.
A.
Ishizaki
and
G. R.
Fleming
,
J. Chem. Phys.
130
,
234110
(
2009
).
24.
V.
Balevičius
, Jr.
,
A.
Gelzinis
,
D.
Abramavicius
,
T.
Mančal
, and
L.
Valkunas
,
Chem. Phys.
404
,
94
(
2012
).
25.
B.
Luo
,
J.
Ye
,
C.
Guan
, and
Y.
Zhao
,
Phys. Chem. Chem. Phys.
12
,
15073
(
2010
).
26.
V.
Chorošajev
,
A.
Gelzinis
,
L.
Valkunas
, and
D.
Abramavicius
,
Chem. Phys.
481
,
108
(
2016
).
27.
S.
Jang
,
Y.-C.
Cheng
,
D. R.
Reichman
, and
J. D.
Eaves
,
J. Chem. Phys.
129
,
101104
(
2008
).
28.
A.
Kolli
,
A.
Nazir
, and
A.
Olaya-Castro
,
J. Chem. Phys.
135
,
154112
(
2011
).
29.
F. A.
Pollock
,
D. P. S.
McCutcheon
,
B. W.
Lovett
,
E. M.
Gauger
, and
A.
Nazir
,
New J. Phys.
15
,
075018
(
2013
).
30.
J.
Iles-Smith
,
A. G.
Dijkstra
,
N.
Lambert
, and
A.
Nazir
,
J. Chem. Phys.
144
,
044110
(
2016
).
31.
V.
Abramavicius
and
D.
Abramavicius
,
J. Chem. Phys.
140
,
065103
(
2014
).
32.
J.
Cerrillo
and
J.
Cao
,
Phys. Rev. Lett.
112
,
110401
(
2014
).
33.
R.
Rosenbach
,
J.
Cerrillo
,
S. F.
Huelga
,
J.
Cao
, and
M. B.
Plenio
,
New J. Phys.
18
,
023035
(
2016
).
34.
A. A.
Kananenka
,
C.-Y.
Hsieh
,
J.
Cao
, and
E.
Geva
,
J. Phys. Chem. Lett.
7
,
4809
(
2016
).
35.
H.
van Amerongen
,
L.
Valkunas
, and
R.
van Grondelle
,
Photosynthetic Excitons
(
World Scientific
,
Singapore
,
2000
).
36.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
New York
,
1995
).
37.
J.
Rammer
,
Quantum Field Theory of Non-equilibrium States
(
Cambridge University Press
,
New York
,
2007
).
38.
Q.
Shi
and
E.
Geva
,
J. Chem. Phys.
119
,
12063
(
2003
).
39.
A.
Kell
,
X.
Feng
,
M.
Reppert
, and
R.
Jankowiak
,
J. Phys. Chem. B
117
,
7317
(
2013
).
40.
A.
Gelzinis
,
D.
Abramavicius
, and
L.
Valkunas
,
Phys. Rev. B
84
,
245430
(
2011
).
41.
V. I.
Novoderezhkin
and
R.
van Grondelle
,
J. Phys. B: At., Mol. Opt. Phys.
50
,
124003
(
2017
).
42.
M.
Buser
,
J.
Cerrillo
,
G.
Schaller
, and
J.
Cao
, e-print arXiv:1709.02310 [quant-ph].
43.
J. M.
Moix
and
J.
Cao
,
J. Chem. Phys.
139
,
134106
(
2013
).
44.
L.
Zhu
,
H.
Liu
, and
Q.
Shi
,
New J. Phys.
15
,
095020
(
2013
).
You do not currently have access to this content.