We report a structural polymorphism of the S-DNA when a canonical B-DNA is stretched under different pulling protocols and provide a fundamental molecular understanding of the DNA stretching mechanism. Extensive all atom molecular dynamics simulations reveal a clear formation of S-DNA when the B-DNA is stretched along the 3′ directions of the opposite strands (OS3) and is characterized by the changes in the number of H-bonds, entropy, and free energy. Stretching along the 5′ directions of the opposite strands (OS5) leads to force induced melting form of the DNA. Interestingly, stretching along the opposite ends of the same strand leads to a coexistence of both the S- and melted M-DNA structures. We also do the structural characterization of the S-DNA by calculating various helical parameters. We find that the S-DNA has a twist of ∼10° which corresponds to a helical repeat length of ∼36 base pairs in close agreement with the previous experimental results. Moreover, we find that the free energy barrier between the canonical and overstretched states of DNA is higher for the same termini pulling protocol in comparison to all other protocols considered in this work. Overall, our observations not only reconcile with the available experimental results qualitatively but also enhance the understanding of different overstretched DNA structures.

1.
C.
Bustamante
,
J. F.
Marko
,
E. D.
Siggia
, and
S.
Smith
,
Science
265
,
1599
(
1994
).
2.
J. F.
Marko
and
E. D.
Siggia
,
Macromolecules
28
,
8759
(
1995
).
3.
C. G.
Baumann
,
S. B.
Smith
,
V. A.
Bloomfield
, and
C.
Bustamante
,
Proc. Natl. Acad. Sci. U. S. A.
94
(
12
),
6185
(
1997
).
4.
B.
Alberts
 et al,
Molecular Biology of the Cell
, 5th ed. (
Garland Science
,
New York
,
2008
).
5.
F.
Dehez
,
H.
Gattuso
,
E.
Bignon
,
C.
Morell
,
E.
Dumont
, and
A.
Monari
,
Nucleic Acids Res.
45
,
3654
(
2017
).
6.
P. D.
Dans
,
A.
Pérez
,
I.
Faustino
,
R.
Lavery
, and
M.
Orozco
,
Nucleic Acids Res.
40
,
10668
(
2012
).
7.
S. B.
Smith
,
L.
Finzi
, and
C.
Bustamante
,
Science
258
(
5085
),
1122
(
1992
).
8.
S. B.
Smith
,
Y.
Cui
, and
C.
Bustamante
,
Science
271
(
5250
),
795
(
1996
).
9.
P.
Cluzel
,
A.
Lebrun
,
C.
Heller
,
R.
Lavery
,
J.-L.
Viovy
,
D.
Chatenay
, and
F.
Caron
,
Science
271
(
5250
),
792
(
1996
).
10.
K. C.
Neuman
and
A.
Nagy
,
Nat. Methods
5
,
491
(
2008
).
11.
K. R.
Chaurasiya
,
T.
Paramanathan
,
M. J.
McCauley
, and
M. C.
Williams
,
Phys. Life Rev.
7
,
299
(
2010
).
12.
A.
Lebrun
and
R.
Lavery
,
Nucleic Acids Res.
24
(
12
),
2260
(
1996
).
13.
K. M.
Kosikov
,
A. A.
Gorin
,
V. B.
Zhurkin
, and
W. K.
Olson
,
J. Mol. Biol.
289
,
1301
(
1999
).
14.
S. A.
Harris
,
Z. A.
Sands
, and
C. A.
Laughton
,
Biophys. J.
88
,
1684
(
2005
).
15.
S.
Piana
,
Nucleic Acids Res.
33
,
7029
(
2005
).
16.
R.
Lohikoski
,
J.
Timonen
, and
A.
Laaksonen
,
Chem. Phys. Lett.
407
,
23
(
2005
).
17.
S.
Piana
,
J. Phys. Chem. A
111
,
12349
(
2007
).
18.
D. R.
Roe
and
A. M.
Chaka
,
J. Phys. Chem. B
113
,
15364
(
2009
).
19.
M.
Santosh
and
P. K.
Maiti
,
J. Phys.: Condens. Matter
21
(
3
),
034113
(
2009
).
20.
J.
Řezáč
,
P.
Hobza
, and
S. A.
Harris
,
Biophys. J.
98
,
101
(
2010
).
21.
M.
Wolter
,
M.
Elstner
, and
T.
Kubar
,
J. Phys. Chem. A
115
,
11238
(
2011
).
22.
M. D.
Wang
,
H.
Yin
,
R.
Landick
,
J.
Gelles
, and
S. M.
Block
,
Biophys. J.
72
,
1335
(
1997
).
23.
C.
Danilowicz
,
V. W.
Coljee
,
C.
Bouzigues
,
D. K.
Lubensky
,
D. R.
Nelson
, and
M.
Prentiss
,
Proc. Natl. Acad. Sci. U. S. A.
100
,
1694
(
2003
).
24.
K.
Hatch
,
C.
Danilowicz
,
V.
Coljee
, and
M.
Prentiss
,
Phys. Rev. E
78
,
011920
(
2008
).
25.
C.
Danilowicz
,
C.
Limouse
,
K.
Hatch
,
A.
Conover
,
V. W.
Coljee
,
N.
Kleckner
, and
M.
Prentiss
,
Proc. Natl. Acad. Sci. U. S. A.
106
(
32
),
13196
(
2009
).
26.
D. H.
Paik
and
T. T.
Perkins
,
J. Am. Chem. Soc.
133
,
3219
(
2011
).
27.
X.
Zhang
,
H.
Chen
,
H.
Fu
,
P. S.
Doyle
, and
J.
Yan
,
Proc. Natl. Acad. Sci. U. S. A.
109
(
21
),
8103
(
2012
).
28.
M.
Rief
,
H.
Clausen-Schaumann
, and
H. E.
Gaub
,
Nat. Struct. Biol.
6
(
4
),
346
(
1999
).
29.
N.
Bosaeus
,
A. H.
El-Sagheer
,
T.
Brown
,
S. B.
Smith
,
B.
Åkerman
,
C.
Bustamante
, and
B.
Nordén
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
15179
(
2012
).
30.
M.
Karplus
and
R.
Lavery
,
Isr. J. Chem.
54
,
1042
(
2014
).
31.
M. W.
Konrad
and
J. I.
Bolonick
,
J. Am. Chem. Soc.
118
,
10989
(
1996
).
32.
S.
Cocco
,
J.
Yan
,
J.-F.
Leger
,
D.
Chatenay
, and
J. F.
Marko
,
Phys. Rev. E
70
,
011910
(
2004
).
33.
C.
Storm
and
P. C.
Nelson
,
Phys. Rev. E
67
,
051906
(
2003
).
34.
I.
Rouzina
and
V. A.
Bloomfield
,
Biophys. J.
80
(
2
),
882
(
2001
).
35.
J.
van Mameren
,
P.
Gross
,
G.
Farge
,
P.
Hooijman
,
M.
Modesti
,
M.
Falkenberg
,
G. J. L.
Wuite
, and
E. J. G.
Peterman
,
Proc. Natl. Acad. Sci. U. S. A.
106
(
43
),
18231
(
2009
).
36.
C. H.
Albrecht
,
G.
Neuert
,
R. A.
Lugmaier
, and
H. E.
Gaub
,
Biophys. J.
94
,
4766
(
2008
).
37.
H.
Fu
,
H.
Chen
,
J. F.
Marko
, and
J.
Yan
,
Nucleic Acids Res.
38
(
16
),
5594
(
2010
).
38.
J. F.
Léger
,
G.
Romano
,
A.
Sarkar
,
J.
Robert
,
L.
Bourdieu
,
D.
Chatenay
, and
J. F.
Marko
,
Phys. Rev. Lett.
83
(
5
),
1066
(
1999
).
39.
M. C.
Williams
,
J. R.
Wenner
,
I.
Rouzina
, and
V. A.
Bloomfield
,
Biophys. J.
80
(
4
),
1932
(
2001
).
40.
R. K.
Mishra
,
T.
Modi
,
D.
Giri
, and
S.
Kumar
,
J. Chem. Phys.
142
,
174910
(
2015
).
41.
O.
Krichevsky
,
Phys. Life Rev.
7
,
350
(
2010
).
42.
S.
Whitelam
,
Phys. Life Rev.
7
,
348
(
2010
).
43.
M. J.
McCauley
 et al,
Phys. Life Rev.
7
,
358
(
2010
).
44.
X.
Zhang
,
Y.
Qu
,
H.
Chen
,
I.
Rouzina
,
S.
Zhang
,
P. S.
Doyle
, and
J.
Yan
,
J. Am. Chem. Soc.
136
(
45
),
16073
(
2014
).
45.
S.
Mogurampelly
and
P. K.
Maiti
,
Biophys. J.
101
(
6
),
1393
(
2011
).
46.
H.
Joshi
,
A.
Dwaraknath
, and
P. K.
Maiti
,
Phys. Chem. Chem. Phys.
17
(
2
),
1424
(
2015
).
47.
H.
Joshi
,
A.
Kaushik
,
N. C.
Seeman
and
P. K.
Maiti
,
ACS Nano
10
(
8
),
7780
(
2016
).
48.
A.
Balaeff
,
S. L.
Craig
, and
D. N.
Beratan
,
J. Phys. Chem. A
115
,
9377
(
2011
).
49.
S.
Niewieczerzał
and
M.
Cieplak
,
J. Phys.: Condens. Matter
21
,
474221
(
2009
).
50.
A. V.
Savin
,
M. A.
Mazo
,
I. P.
Kikot
, and
A. V.
Onufriev
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
2816
(
2013
).
51.
A.
Kocsis
and
D.
Swigon
,
Int. J. Non-Linear Mech.
47
,
639
(
2012
).
52.
C. W.
Hsu
,
M.
Fyta
,
G.
Lakatos
,
S.
Melchionna
, and
E.
Kaxiras
,
J. Chem. Phys.
137
,
105102
(
2012
).
53.
F.
Romano
,
D.
Chakraborty
,
J. P. K.
Doye
,
T. E.
Ouldridge
, and
A. A.
Louis
,
J. Chem. Phys.
138
,
085101
(
2013
).
54.
D. A.
Case
 et al, AMBER 10 (
University of California
,
San Francisco
,
2008
).
55.
J.
Wang
,
P.
Cieplak
, and
P. A.
Kollman
,
J. Comput. Chem.
21
(
12
),
1049
(
2000
).
56.
A.
Pérez
 et al,
Biophys. J.
92
,
3817
(
2007
).
57.
V.
Hornak
 et al,
Proteins
65
(
3
),
712
(
2006
).
58.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L. J.
Klein
,
Chem. Phys.
79
(
2
),
926
(
1983
).
59.
I. S.
Joung
and
T. E.
Cheatham
 III
,
J. Phys. Chem. B
112
(
30
),
9020
(
2008
).
60.
D. A.
Pearlman
 et al,
Comput. Phys. Commun.
91
,
1
(
1995
).
61.
J. P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
,
J. Comput. Phys.
23
,
327
(
1977
).
62.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
,
33
(
1996
).
63.
G. M.
Torrie
and
J. P.
Valleau
,
J. Comput. Phys.
23
,
187
(
1977
).
64.
D. A.
Case
 et al, AMBER 2014 (
University of California
,
San Francisco
,
2014
).
65.
S.
Mogurampelly
and
P. K.
Maiti
,
J. Chem. Phys.
138
(
3
),
034901
(
2013
).
66.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulations
(
Academic Press
,
San Diego
,
2002
).
67.
S.
Kumar
,
J. M.
Rosenberg
,
D.
Bouzida
,
R. H.
Swendsen
, and
P. A.
Kollman
,
J. Comput. Chem.
13
(
8
),
1011
(
1992
).
68.
A.
Grossfield
, WHAM: the weighted histogram analysis method; version 2.
69.
R.
Lavery
,
M.
Moakher
,
J. H.
Maddocks
,
D.
Petkeviciute
, and
K.
Zakrzewska
,
Nucleic Acids Res.
37
,
5917
(
2009
).
70.
A.
Garai
,
S.
Saurabh
,
Y.
Lansac
, and
P. K.
Maiti
,
J. Phys. Chem. B
119
(
34
),
11146
(
2015
).
71.
T.
Strunz
,
K.
Oroszlan
,
R.
Schäfer
, and
H.
Güntherodt
,
Proc. Natl. Acad. Sci. U. S. A.
96
,
11277
(
1999
).
72.
L. H.
Pope
,
M. C.
Davies
,
C. A.
Laughton
,
C. J.
Roberts
,
S. J. B.
Tendler
, and
P. M.
Williams
,
Eur. Biophys. J.
30
,
53
(
2001
).
73.
I.
Ferreira
,
T. D.
Amarante
, and
G.
Weber
,
J. Chem. Phys.
143
,
175101
(
2015
).
74.
S. T.
Lin
,
M.
Blanco
, and
W. A.
Goddard
,
J. Chem. Phys.
119
,
11792
(
2003
).
75.
S. T.
Lin
,
P. K.
Maiti
, and
W. A.
Goddard
,
J. Phys. Chem. B
114
,
8191
(
2010
).
76.
T. A.
Pascal
,
S. T.
Lin
, and
W. A.
Goddard
,
Phys. Chem. Chem. Phys.
13
,
169
(
2011
).
77.
X.
Zhang
,
H.
Chen
,
S.
Le
,
I.
Rouzina
,
P. S.
Doyle
, and
J.
Yan
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
3865
(
2013
).
78.
S.
Bag
,
S.
Mogurampelly
,
W. A.
Goddard III
and
P. K.
Maiti
,
Nanoscale
8
(
35
),
16044
(
2016
).
79.
I.
Ivani
 et al,
Nat. Methods
13
(
1
),
55
(
2016
).

Supplementary Material

You do not currently have access to this content.