Nanofiller particles, such as carbon nanotubes or metal wires, are used in functional polymer composites to make them conduct electricity. They are often not perfectly straight cylinders but may be tortuous or exhibit kinks. Therefore we investigate the effect of shape deformations of the rod-like nanofillers on the geometric percolation threshold of the dispersion. We do this by using connectedness percolation theory within a Parsons-Lee type of approximation, in combination with Monte Carlo integration for the average overlap volume in the isotropic fluid phase. We find that a deviation from a perfect rod-like shape has very little effect on the percolation threshold, unless the particles are strongly deformed. This demonstrates that idealized rod models are useful even for nanofillers that superficially seem imperfect. In addition, we show that for small or moderate rod deformations, the universal scaling of the percolation threshold is only weakly affected by the precise particle shape.

1.
D. S.
Hecht
,
L.
Hu
, and
G.
Irvin
,
Adv. Mater.
23
,
1482
(
2011
).
2.
R. M.
Mutiso
and
K. I.
Winey
,
Prog. Polym. Sci.
40
,
63
(
2015
).
3.
A. V.
Kyrylyuk
and
P.
van der Schoot
,
Proc. Natl. Acad. Sci. U. S. A.
105
,
8221
(
2008
).
4.
R. H.
Otten
and
P.
van der Schoot
,
Phys. Rev. Lett.
103
,
225704
(
2009
).
5.
R. H.
Otten
and
P.
van der Schoot
,
J. Chem. Phys.
134
,
094902
(
2011
).
6.
R. M.
Mutiso
,
M. C.
Sherrott
,
J.
Li
, and
K. I.
Winey
,
Phys. Rev. B
86
,
214306
(
2012
).
7.
B.
Nigro
,
C.
Grimaldi
,
P.
Ryser
,
A. P.
Chatterjee
, and
P.
van der Schoot
,
Phys. Rev. Lett.
110
,
015701
(
2013
).
8.
H.
Meyer
,
P.
van der Schoot
, and
T.
Schilling
,
J. Chem. Phys.
143
,
044901
(
2015
).
9.
S. I.
White
,
B. A.
DiDonna
,
M.
Mu
,
T. C.
Lubensky
, and
K. I.
Winey
,
Phys. Rev. B
79
,
024301
(
2009
).
10.
R. H.
Otten
and
P.
van der Schoot
,
Phys. Rev. Lett.
108
,
088301
(
2012
).
11.
F.
Dalmas
,
R.
Dendievel
,
L.
Chazeau
,
J.-Y.
Cavaillé
, and
C.
Gauthier
,
Acta Mater.
54
,
2923
(
2006
).
12.
A.
Lucas
,
C.
Zakri
,
M.
Maugey
,
M.
Pasquali
,
P.
van der Schoot
, and
P.
Poulin
,
J. Phys. Chem. C
113
,
20599
(
2009
).
13.
G.
Ambrosetti
,
C.
Grimaldi
,
I.
Balberg
,
T.
Maeder
,
A.
Danani
, and
P.
Ryser
,
Phys. Rev. B
81
,
155434
(
2010
).
14.
T. L.
Hill
,
J. Chem. Phys.
23
,
617
(
1955
).
15.
A.
Coniglio
,
U.
De Angelis
, and
A.
Forlani
,
J. Phys. A
10
,
1123
(
1977
).
16.
S.
Torquato
,
Random Heterogeneous Materials: Microstructure and Macroscopic Properties
(
Springer-Verlag
,
New York
,
2002
).
17.
B.
Vigolo
,
C.
Coulon
,
M.
Maugey
,
C.
Zakri
, and
P.
Poulin
,
Science
309
,
920
(
2005
).
18.
L.
Onsager
,
Ann. N. Y. Acad. Sci.
51
,
627
(
1949
).
19.
A.
Bug
,
S.
Safran
, and
I.
Webman
,
Phys. Rev. B
33
,
4716
(
1986
).
20.
L.
Berhan
and
A.
Sastry
,
Phys. Rev. E
75
,
041120
(
2007
).
21.
J. D.
Parsons
,
Phys. Rev. A
19
,
1225
(
1979
).
22.
S.
Lee
,
J. Chem. Phys.
87
,
4972
(
1987
).
23.
T.
Schilling
,
M. A.
Miller
, and
P.
van der Schoot
,
Europhys. Lett.
111
,
56004
(
2015
).
24.
S.
Belli
,
S.
Dussi
,
M.
Dijkstra
, and
R.
van Roij
,
Phys. Rev. E
90
,
020503(R)
(
2014
).
25.
S.
Dussi
,
S.
Belli
,
R.
van Roij
, and
M.
Dijkstra
,
J. Chem. Phys.
142
,
074905
(
2015
).
26.
L.
Berhan
and
A.
Sastry
,
Phys. Rev. E
75
,
041121
(
2007
).
27.
C.
Li
,
E. T.
Thostenson
, and
T.-W.
Chou
,
Compos. Sci. Technol.
68
,
1445
(
2008
).
28.
A.
Khokhlov
and
A.
Semenov
,
Phys. A
108
,
546
(
1981
).
29.
P. I. C.
Teixeira
,
A.
Masters
, and
B.
Mulder
,
Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A
323
,
167
(
1998
).
30.
R.
Blaak
and
B. M.
Mulder
,
Phys. Rev. E
58
,
5873
(
1998
).
31.
F.
Bisi
,
R.
Rosso
,
E. G.
Virga
, and
G. E.
Durand
,
Phys. Rev. E
78
,
011705
(
2008
).
You do not currently have access to this content.