It has been proposed that organic molecules required for life on earth may be formed by the radiation processing of molecular ices in space environments, e.g., within our solar system. Such processes can be studied in the laboratory with surface science analytical techniques and by using low-energy electron (LEE) irradiation to simulate the effects of the secondary electrons that are generated in great abundance whenever ionizing radiation interacts with matter. Here we present new measurements of 70 eV LEE irradiation of multilayer films of CH4, 18O2, and CH4/18O2 mixtures (3:1 ratio) at 22 K. The electron stimulated desorption (ESD) yields of cations and anions have been recorded as a function of electron fluence. At low fluence, the prompt desorption of more massive multi-carbon or C—O containing cationic fragments agrees with our earlier measurements. However, new anion ESD signals of C2, C2H, and C2H2 from CH4/18O2 mixtures increase with fluence, indicating the gradual synthesis (and subsequent electron-induced fragmentation) of new, more complex species containing several C and possibly O atoms. Comparisons between the temperature programed desorption (TPD) mass spectra of irradiated and unirradiated films show the electron-induced formation of new chemical species, the identities of which are confirmed by reference to the NIST database of electron impact mass spectra and by TPD measurements of films composed of the proposed products. New species observed in the TPD of irradiated mixture films include C3H6, C2H5OH, and C2H6. Furthermore, X-ray photoelectron spectroscopy of irradiated films confirms the formation of C—O, C=O, and O=C—O— bonds of newly formed molecules. Our experiments support the view that secondary LEEs produced by ionizing radiation drive the chemistry in irradiated ices in space, irrespective of the radiation type.

1.
A. G. G. M.
Tielens
, “
The molecular universe
,”
Rev. Mod. Phys.
85
,
1021
1081
(
2013
).
2.
P.
Ehrenfreund
and
S. B.
Charnley
, “
Organic molecules in the interstellar medium, comets, and meteorites: A voyage from dark clouds to the early earth
,”
Annu. Rev. Astron. Astrophys.
38
,
427
483
(
2000
).
3.
S.
Pizzarello
and
E.
Shock
, “
The organic composition of carbonaceous meteorites: The evolutionary story ahead of biochemistry
,”
Cold Spring Harbor Perspect. Biol.
2
,
a002105
(
2015
).
4.
A. S.
Burton
,
J. C.
Stern
,
J. E.
Elsila
,
D. P.
Glavin
, and
J. P.
Dworkin
, “
Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites
,”
Chem. Soc. Rev.
41
(
16
),
5459
5472
(
2012
).
5.
H. S. P.
Müller
,
F.
Schlöder
,
J.
Stutzki
, and
G.
Winnewisser
, “
The cologne database for molecular spectroscopy, CDMS: A useful tool for astronomers and spectroscopists
,”
J. Mol. Struct.
742
,
215
227
(
2005
).
6.
A.
Belloche
,
H. S. P.
Müller
,
K. M.
Menten
,
P.
Schilke
, and
C.
Comito
, “
Complex organic molecules in the interstellar medium: IRAM 30 m line survey of Sagittarius B2(N) and (M)
,”
Astron. Astrophys.
559
,
A47
(
2013
).
7.
T. E.
Madey
,
R. E.
Johnson
, and
T. M.
Orlando
, “
Far-out surface science: Radiation-induced surface processes in the solar system
,”
Surf. Sci.
500
,
838
858
(
2002
).
8.
B. W.
Carroll
and
D. A.
Ostlie
,
An Introduction to Modern Astrophysics
, 2nd ed. (
Pearson
,
2007
).
9.
C. J.
Bennett
,
C.
Pirim
, and
T. M.
Orlando
, “
Space-weathering of solar system bodies: A laboratory perspective
,”
Chem. Rev.
113
,
9086
9150
(
2013
).
10.
S. M.
Pimblott
and
J. A.
LaVerne
, “
Production of low-energy electrons by ionizing radiation
,”
Radiat. Phys. Chem.
76
(
8-9
),
1244
1247
(
2007
).
11.
E.
Böhler
,
J.
Warneke
, and
P.
Swiderek
, “
Control of chemical reactions and synthesis by low-energy electrons
,”
Chem. Soc. Rev.
42
,
9219
9231
(
2013
).
12.
C. R.
Arumainayagam
,
H. L.
Lee
,
R. B.
Nelson
,
D. R.
Haines
, and
R. P.
Gunawardane
, “
Low-energy electron-induced reactions in condensed matter
,”
Surf. Sci. Rep.
65
,
1
44
(
2010
).
13.
M. C.
Boyer
,
N.
Rivas
,
A. A.
Tran
,
C. A.
Verish
, and
C. R.
Arumainayagam
, “
The role of low-energy (≤20 eV) electrons in astrochemistry
,”
Surf. Sci.
652
,
26
(
2016
).
14.
M. A.
Huels
,
L.
Parenteau
,
A. D.
Bass
, and
L.
Sanche
, “
Small steps on the slippery road to life: Molecular synthesis in astrophysical ices initiated by low energy electron impact
,”
Int. J. Mass Spectrom.
277
,
256
261
(
2008
).
15.
J. H.
Lacy
,
J. S.
Carr
,
N. J.
Evans
,
F.
Baas
,
J. M.
Achtermann
, and
J. F.
Arens
, “
Discovery of interstellar methane—Observations of gaseous and solid CH4 absorption toward young stars in molecular clouds
,”
Astrophys. J.
376
,
556
560
(
1991
).
16.
R. N.
Clark
,
R.
Carlson
,
W.
Grundy
, and
K.
Noll
, in
The Science of Solar System Ices
(
Springer-Verlag
,
New York
,
2013
).
17.
P.
Ehrenfreund
,
M.
Spaans
, and
N. G.
Holm
, “
The evolution of organic matter in space
,”
Philos. Trans. R. Soc., A
369
(
1936
),
538
554
(
2011
).
18.
J. R.
Spencer
,
W. M.
Calvin
, and
M. J.
Person
, “
Charge-coupled device spectra of the Galilean satellites: Molecular oxygen on Ganymede
,”
J. Geophys. Res.
100
(
E9
),
19049
, (
1995
).
19.
J. R.
Spencer
and
W. M.
Calvin
, “
Condensed O[TINF]2[/TINF] on Europa and Callisto
,”
Astron. J.
124
,
3400
3403
(
2002
).
20.
O.
Mousis
 et al, “
Methane clathrates in the solar system
,”
Astrobiology
15
,
308
326
(
2015
).
21.
L.
Sanche
, “
Transmission of 0–15 eV monoenergetic electrons through thin-film molecular solids
,”
J. Chem. Phys.
71
(
12
),
4860
(
1979
).
22.
G.
Bader
,
G.
Perluzzo
,
L. G.
Caron
, and
L.
Sanche
, “
Elastic and inelastic mean-free-path determination in solid xenon from electron transmission experiments
,”
Phys. Rev. B
26
(
11
),
6019
6029
(
1982
).
23.
A.
Bass
,
L.
Parenteau
,
F.
Weik
, and
L.
Sanche
, “
The effects of temperature and morphology on electron transmission and stimulated desorption of H from thin hydrocarbon films
,”
J. Chem. Phys.
113
(
19
),
8746
8752
(
2000
).
24.
D. V.
Klyachko
,
M. A.
Huels
, and
L.
Sanche
, “
Halogen anion formation in 5-halouracil films: X rays compared to subionization electrons
,”
Radiat. Res.
151
,
177
187
(
1999
).
25.
Y.
Yildirim
,
M.
Balcan
,
A. D.
Bass
,
P.
Cloutier
, and
L.
Sanche
, “
Electron stimulated desorption of anions and cations from condensed allyl glycidyl ether
,”
Phys. Chem. Chem. Phys.
12
(
28
),
7950
7958
(
2010
).
26.
A. D.
Bass
,
L.
Parenteau
,
M. A.
Huels
, and
L.
Sanche
, “
Reactive scattering of O- in organic films at subionization collision energies
,”
J. Chem. Phys.
109
,
8635
8640
(
1998
).
27.
X.
Pan
,
H.
Abdoul-Carime
,
P.
Cloutier
,
A. D.
Bass
, and
L.
Sanche
, “
D, O and OD desorption induced by low-energy (0–20 eV) electron impact on amorphous D2O films
,”
Radiat. Phys. Chem.
72
,
193
199
(
2005
).
28.
M. N.
Hedhili
,
P.
Cloutier
,
A. D.
Bass
,
T. E.
Madey
, and
L.
Sanche
, “
Electron stimulated desorption of anionic fragments from films of pure and electron-irradiated thiophene
,”
J. Chem. Phys.
125
,
094704-1
094704-12
(
2006
).
29.
I. S.
Gilmore
,
Surface Analysis: The Principal Techniques
, 2nd ed. (
John Wiley and Sons Ltd.
,
2009
).
30.
D.
Briggs
and
M. P.
Seah
,
Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy
(
John Wiley and Sons Ltd.
,
1983
).
31.
See http://xpspeak.software.informer.com/4.1/ to download the XPSPeak peak fitting software.
32.
J. P.
Meyburg
,
I. I.
Nedrygailov
,
E.
Hasselbrink
, and
D.
Diesing
, “
Thermal desorption spectroscopy from the surfaces of metal-oxide-semiconductor nanostructures
,”
Rev. Sci. Instrum.
85
,
104102
(
2014
).
33.
K. I.
Öberg
, “
Photochemistry and astrochemistry: Photochemical pathways to interstellar complex organic molecules
,”
Chem. Rev.
17
(
116
),
9631
9663
(
2016
).
34.
E.
Burean
,
I.
Ipolyi
,
T.
Hamann
, and
P.
Swiderek
, “
Thermal desorption spectrometry for identification of products formed by electron-induced reactions
,”
Int. J. Mass Spectrom.
277
,
215
219
(
2008
).
35.
X.
Pan
,
A. D.
Bass
,
J. P.
Jay-Gerin
, and
L.
Sanche
, “
A mechanism for the production of hydrogen peroxide and the hydroperoxyl radical on icy satellites by low-energy electrons
,”
Icarus
172
,
521
525
(
2004
).
36.
A. D.
Bass
and
L.
Sanche
, “
Reactions induced by low energy electrons in cryogenic films (review)
,”
Low Temp. Phys.
29
,
202
214
(
2003
).
37.
L.
Sanche
,
L.
Parenteau
, and
P.
Cloutier
, “
Dissociative attachment reactions in electron stimulated desorption from condensed O2 and O2-doped rare-gas matrices
,”
J. Chem. Phys.
91
(
4
),
2664
2674
(
1989
).
38.
T. E.
Madey
and
J. T.
Yates
, “
Electron-stimulated desorption as a tool for studies of chemisorption: A review
,”
J. Vac. Sci. Technol., A
8
,
525
(
1971
).
39.
M. A.
Huels
,
L.
Parenteau
, and
L.
Sanche
, “
Substrate dependence of electron-stimulated O yields from dissociative electron attachment to physisorbed O2
,”
J. Chem. Phys.
100
(
5
),
3940
3956
(
1994
).
40.
P.
Rowntree
,
L.
Parenteau
, and
L.
Sanche
, “
Electron stimulated desorption via dissociative attachment in amorphous H2O
,”
J. Chem. Phys.
94
,
8570
8576
(
1991
).
41.
K. M. A.
Refaey
and
J. L.
Franklin
, “
Endoergic ion—Molecule-collision processes of negative ions. III. Collisions of I on O2, CO, and CO2
,”
Int. J. Mass Spectrom. Ion Phys.
20
,
19
32
(
1976
).
42.
M.
Knapp
,
O.
Echt
,
D.
Kreisle
,
T. D.
Märk
, and
E.
Recknagel
, “
Formation of long-lived CO2, N2O, and their dimer anions, by electron attachment to van der Waals clusters
,”
Chem. Phys. Lett.
126
(
3-4
),
225
231
(
1986
).
43.
F. H.
Dorman
, “
Negative fragment ions from resonance capture processes
,”
J. Chem. Phys.
44
,
3856
3863
(
1966
).
44.
P.
Rowntree
,
L.
Parenteau
, and
L.
Sanche
, “
Anion yields produced by low-energy electron impact on condensed hydrocarbon films
,”
J. Phys. Chem.
95
(
12
),
4902
4909
(
1991
).
45.
B. C.
Ibănescu
,
O.
May
,
A.
Monney
, and
M.
Allan
, “
Electron-induced chemistry of alcohols
,”
Phys. Chem. Chem. Phys.
9
,
3163
3173
(
2007
).
46.
B. C.
Ibănescu
and
M.
Allan
, “
Selective cleavage of the C–O bonds in alcohols and asymmetric ethers by dissociative electron attachment
,”
Phys. Chem. Chem. Phys.
11
(
35
),
7640
(
2009
).
47.
O.
Karis
 et al, “
Manifestation of the paramagnetic splitting of physisorbed O2 in core and valence spectroscopies
,”
Surf. Sci.
352-354
,
511
517
(
1996
).
48.
A. F.
Lee
,
D. E.
Gawthrope
,
N. J.
Hart
, and
K.
Wilson
, “
A fast XPS study of the surface chemistry of ethanol over Pt{111}
,”
Surf. Sci.
548
,
200
208
(
2004
).
49.
See http://webbook.nist.gov/chemistry/ for the NIST Chemistry webbook (NIST Standard Reference Database Number 69).
50.
B. M.
Jones
and
R. I.
Kaiser
, “
Application of reflectron time-of-flight mass spectroscopy in the analysis of astrophysically relevant ices exposed to ionization radiation: Methane (CH4) and D4-methane (CD4) as a case study
,”
J. Phys. Chem. Lett.
4
(
11
),
1965
1971
(
2013
).
51.
C. J.
Bennett
,
C. S.
Jamieson
,
Y.
Osamura
, and
R. I.
Kaiser
, “
Laboratory studies on the irradiation of methane in interstellar, cometary, and solar system ices
,”
Astrophys. J.
653
,
792
811
(
2006
).
52.
A. L. F.
Barros
 et al, “
Cosmic ray impact on astrophysical ices: Laboratory studies on heavy ion irradiation of methane
,”
Astron. Astrophys.
531
,
A160
(
2011
).
53.
G. A.
Baratta
,
G.
Leto
, and
M. E.
Palumbo
, “
A comparison of ion irradiation and UV photolysis of CH4 and CH3OH
,”
Astron. Astrophys.
384
,
343
(
2002
).
54.
S.
Kundu
,
V. S.
Prabhudesai
, and
E.
Krishnakumar
, “
Low energy electron induced C–H activation reactions in methane containing ices
,”
J. Phys. Chem. C
121
,
22862
22871
(
2017
).

Supplementary Material

You do not currently have access to this content.