We present results for quantum optimal control (QOC) of the coherent π electron ring currents in polycyclic aromatic hydrocarbons (PAHs). Since PAHs consist of a number of condensed benzene rings, in principle, there exist various coherent ring patterns. These include the ring current localized to a designated benzene ring, the perimeter ring current that flows along the edge of the PAH, and the middle ring current of PAHs having an odd number of benzene rings such as anthracene. In the present QOC treatment, the best target wavefunction for generation of the ring current through a designated path is determined by a Lagrange multiplier method. The target function is integrated into the ordinary QOC theory. To demonstrate the applicability of the QOC procedure, we took naphthalene and anthracene as the simplest examples of linear PAHs. The mechanisms of ring current generation were clarified by analyzing the temporal evolutions of the electronic excited states after coherent excitation by UV pulses or (UV+IR) pulses as well as those of electric fields of the optimal laser pulses. Time-dependent simulations of the perimeter ring current and middle ring current of anthracene, which are induced by analytical electric fields of UV pulsed lasers, were performed to reproduce the QOC results.

1.
M. F.
Kling
and
M. J. J.
Vrakking
,
Annu. Rev. Phys. Chem.
59
,
463
(
2008
).
2.
F.
Krausz
and
M.
Ivanov
,
Rev. Mod. Phys.
81
,
163
(
2009
).
3.
E.
Goulielmakis
,
Z. H.
Loh
,
A.
Wirth
,
R.
Santra
,
N.
Rohringer
,
V. S.
Yakovlev
,
S.
Zherebtsov
,
T.
Pfeifer
,
A. M.
Azzeer
,
M. F.
Kling
,
S. R.
Leone
, and
F.
Krausz
,
Nature
466
,
739
(
2010
).
4.
S. V.
Benson
,
J. R.
Boyce
,
D. R.
Douglas
,
P.
Evtushenko
,
F. E.
Hannon
,
C.
Hernandez-Garcia
,
J. M.
Klopf
,
G. R.
Neil
,
M. D.
Shinn
,
C. D.
Tennant
,
S.
Zhang
, and
G. P.
Williams
,
Nucl. Instrum. Methods Phys. Res., Sect. A
649
,
9
(
2011
).
5.
S.
Chen
,
S.
Gilbertson
,
H.
Wang
,
M.
Chini
,
K.
Zhao
,
S. D.
Khan
,
Y.
Wu
, and
Z.
Chang
,
Advances in Multi-Photon Processes and Spectroscopy
(
World Scientific
,
2011
), Vol. 20, p.
127
.
6.
M.
Wollenhaupt
and
T.
Baumert
,
Faraday Discuss.
153
,
9
(
2011
).
7.
M. J. J.
Vrakking
,
Phys. Chem. Chem. Phys.
16
,
2775
(
2014
).
8.
F.
Calegari
,
D.
Ayuso
,
A.
Trabattori
,
L.
Belshow
,
S.
De Cammillis
,
S.
Anumula
,
F.
Frassetto
,
L.
Poletto
,
A.
Palacios
,
P.
Decleva
,
J. B.
Greenwood
,
F.
Martín
, and
M.
Nisoli
,
Science
346
,
336
(
2014
).
9.
P. M.
Kraus
,
B.
Mignolet
,
D.
Baykusheva
,
A.
Rupenyan
,
L.
Horny
,
E. F.
Penka
,
G.
Grassi
,
O. I.
Tolstikhin
,
J.
Schneider
,
F.
Jensen
,
L. B.
Madsen
,
A. D.
Bandrauk
,
F.
Remacle
, and
H. J.
Wörner
,
Science
350
,
790
(
2015
).
10.
Z.
Chang
,
P. B.
Corkum
, and
S. R.
Leone
,
J. Opt. Soc. Am. B
33
,
1081
(
2016
).
11.
F.
Calegari
,
A.
Trabattoni
,
A.
Palacios
,
D.
Ayuso
,
M. C.
Castrovilli
,
J. B.
Greenwood
,
P.
Decleva
,
F.
Martín
, and
M.
Nisoli
,
J. Phys. B
49
,
142001
(
2016
).
12.
D.
Ayuso
,
A.
Palacios
,
P.
Decleva
, and
F.
Martín
,
Phys. Chem. Chem. Phys.
19
,
19767
(
2017
).
13.
M.
Nisoli
,
P.
Decleva
,
F.
Calegari
,
A.
Palacios
, and
F.
Martín
,
Chem. Rev.
117
,
10760
(
2017
).
14.
A. D.
Bandrauk
,
S.
Chelkowski
, and
H. S.
Nguyen
,
Int. J. Quantum Chem.
100
,
834
(
2004
).
15.
P.
Krause
,
T.
Klamroth
, and
P.
Saalfrank
,
J. Chem. Phys.
123
,
074105
(
2005
).
16.
F.
Remacle
and
R. D.
Levine
,
Proc. Natl. Acad. Sci. U. S. A.
103
,
6793
(
2006
).
17.
H.
Mineo
,
K.
Nagaya
,
M.
Hayashi
, and
S. H.
Lin
,
J. Phys. B: At., Mol. Opt. Phys.
40
,
2435
(
2007
).
18.
H.
Mineo
,
Y.
Teranishi
,
S. D.
Chao
, and
S. H.
Lin
,
Chem. Phys. Lett.
499
,
45
(
2010
).
19.
Y.
Fujimura
and
H.
Sakai
,
Electronic and Nuclear Dynamics in Molecular Systems
(
World Scientific
,
Singapore
,
2011
), p.
55
.
20.
I. S.
Ulusoy
and
M.
Nest
,
J. Am. Chem. Soc.
133
,
20230
(
2011
).
21.
K.
Moore
and
H.
Rabitz
,
Nat. Chem.
4
,
72
(
2012
).
22.
I.
Barth
and
J.
Manz
,
Angew. Chem.
118
,
3028
(
2006
).
23.
I.
Barth
,
J.
Manz
,
Y.
Shigeta
, and
K.
Yagi
,
J. Am. Chem. Soc.
128
,
7043
(
2006
).
24.
I.
Barth
and
J.
Manz
,
Phys. Rev. A
75
,
012510
(
2007
).
25.
K.
Nobusada
and
K.
Yabana
,
Phys. Rev. A
75
,
032518
(
2007
).
26.
I.
Barth
and
J.
Manz
,
Progress in Ultrafast Intense Laser Science
(
Springer
,
Berlin
,
2010
), Vol. 6, p.
21
.
27.
I.
Barth
,
C.
Daniel
,
E.
Gindensperger
,
J.
Manz
,
J. F.
Pèrez-Torres
,
A.
Schild
,
C.
Stemmle
,
D.
Sulzer
, and
Y.
Yang
,
Advances in Multi-Photon Processes and Spectroscopy
(
World Scientific
,
Singapore
,
2014
), Vol. 22, p.
59
.
28.
I.
Barth
,
C.
Bressler
,
S.
Koseki
, and
J.
Manz
,
Chem. - Asian J.
7
,
1261
(
2012
).
29.
D.
Jia
,
J.
Manz
,
B.
Paulus
, and
Y.
Yang
,
Chem. Phys.
482
,
146
(
2016
).
30.
M.
Kanno
,
H.
Kono
, and
Y.
Fujimura
,
Angew. Chem., Int. Ed.
45
,
7995
(
2006
).
31.
M.
Kanno
,
K.
Hoki
,
H.
Kono
, and
Y.
Fujimura
,
J. Chem. Phys.
127
,
204314
(
2007
).
32.
M.
Kanno
,
Y.
Ono
,
H.
Kono
, and
Y.
Fujimura
,
J. Phys. Chem.
116
,
11260
(
2012
).
33.
M.
Kanno
,
H.
Kono
,
Y.
Fujimura
, and
S. H.
Lin
,
Phys. Rev. Lett.
104
,
108302
(
2010
).
34.
H.
Mineo
,
M.
Kanno
,
H.
Kono
,
S. D.
Chao
,
S. H.
Lin
, and
Y.
Fujimura
,
Chem. Phys.
392
,
136
(
2012
).
35.
H.
Mineo
,
M.
Yamaki
,
Y.
Teranishi
,
M.
Hayashi
,
S. H.
Lin
, and
Y.
Fujimura
,
J. Am. Chem. Soc.
134
,
14279
(
2012
).
36.
H.
Mineo
,
S. H.
Lin
, and
Y.
Fujimura
,
J. Chem. Phys.
138
,
074304
(
2013
).
37.
H.
Mineo
,
S. H.
Lin
,
Y.
Fujimura
,
J.
Xu
,
R. X.
Xu
, and
Y. J.
Yan
,
J. Chem. Phys.
139
,
214306
(
2013
).
38.
H.
Mineo
,
S. H.
Lin
, and
Y.
Fujimura
,
Chem. Phys.
442
,
103
(
2014
).
39.
M.
Yamaki
,
H.
Mineo
,
Y.
Teranishi
,
M.
Hayashi
,
Y.
Fujimura
,
H.
Nakamura
, and
S. H.
Lin
,
J. Phys. Chem. Lett.
5
,
2044
(
2014
).
40.
M.
Yamaki
,
H.
Mineo
,
Y.
Teranishi
,
S. H.
Lin
, and
Y.
Fujimura
,
J. Chin. Chem. Soc.
63
,
87
(
2016
).
41.
M.
Yamaki
,
Y.
Teranishi
,
H.
Nakamura
,
Y.
Fujimura
, and
S. H.
Lin
,
Phys. Chem. Chem. Phys.
18
,
1570
(
2016
).
42.
H.
Mineo
,
M.
Yamaki
,
G. S.
Kim
,
Y.
Teranishi
,
S. H.
Lin
, and
Y.
Fujimura
,
Phys. Chem. Chem. Phys.
18
,
26786
(
2016
).
43.
H.
Mineo
and
Y.
Fujimura
,
J. Phys. Chem. Lett.
8
,
2019
(
2017
).
44.
K. J.
Yuan
,
C. C.
Shu
,
D.
Dong
, and
A. D.
Bandrauk
,
J. Phys. Chem. Lett.
8
,
2229
(
2017
).
45.
M.
Yamaki
,
Y.
Teranishi
,
S. H.
Lin
, and
Y.
Fujimura
,
Mol. Phys.
115
,
1880
(
2017
).
46.
P. W.
Fowler
,
E.
Steiner
,
B.
Cadioli
, and
R.
Zanasi
,
J. Phys. Chem.
102
,
7297
(
1998
).
47.
E.
Steiner
and
P. W.
Fowler
,
J. Phys. Chem. A
105
,
9553
(
2001
).
48.
W.
Zhu
,
J.
Botina
, and
H.
Rabiz
,
J. Chem. Phys.
108
,
1953
(
1998
).
49.
W.
Zhu
and
H.
Rabitz
,
J. Chem. Phys.
109
,
385
(
1998
).
50.
Y.
Ohtsuki
,
W.
Zhu
, and
H.
Rabitz
,
J. Chem. Phys.
110
,
9825
(
1999
).
51.
T.-K.
Ho
,
H.
Rabitz
, and
S.-I.
Chu
,
Advances in Multi-Photon Processes and Spectroscopy
(
World Scientific
,
Singapore
,
2014
), Vol. 22, p.
1
.
52.
K.
Sundermann
and
R.
de Vivie-Riedle
,
J. Chem. Phys.
110
,
1896
(
1999
).
53.
H.
Stapelfeldt
and
T.
Seideman
,
Rev. Mod. Phys.
75
,
543
(
2003
).
54.
T.
Kanai
,
S.
Minemoto
, and
H.
Sakai
,
Nature
435
,
470
(
2005
).
55.
K.
Oda
,
M.
Hita
,
S.
Minemoto
, and
H.
Sakai
,
Phys. Rev. Lett.
104
,
213901
(
2010
).
56.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
O.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
, gaussian 09, Revision A.02,
Gaussian, Inc.
,
Wallingford, CT
,
2009
.
57.
K.
Ding
,
W.
Kranitzky
,
S. F.
Fischer
, and
W.
Kaiser
,
Phys. Chem. Lett.
72
,
39
(
1980
).
58.
T. M.
Halasinski
,
F.
Salama
, and
L. J.
Allamandola
,
Astrophys. J.
628
,
555
(
2005
).
59.
J.
Ferguson
,
L. W.
Reeves
, and
W. G.
Schneider
,
Can. J. Chem.
35
,
1117
(
1957
).
60.
J. S.
Dewar
and
H. C.
Longuet-Higgins
,
Proc. Phys. Soc. A
67
,
795
(
1954
).
61.
J. J.
Rodriguez
and
S.
Mukamel
,
J. Phys. Chem. A
116
,
11095
(
2012
).
62.
J.
Repp
and
G.
Meyer
,
Phys. Rev. Lett.
94
,
026803
(
2005
).
63.
P. A.
Sloan
,
J. Phys.: Condens. Matter
22
,
264001
(
2010
).
64.
X.-L.
Fan
,
X.-Q.
Wang
,
J.-T.
Wang
, and
H.-D.
Li
,
Phys. Lett. A
378
,
1379
(
2014
).
65.
D.
Regar
,
R.
Budakian
,
H. J.
Mamin
, and
B. W.
Chui
,
Nature
430
,
329
(
2004
).

Supplementary Material

You do not currently have access to this content.