Imaginary-time path-integral (PI) molecular simulations can be used to calculate exact quantum statistical mechanical properties for complex systems containing many interacting atoms and molecules. The limiting computational factor in a PI simulation is typically the evaluation of the potential energy surface (PES) and forces at each ring-polymer “bead”; for an n-bead ring-polymer, a PI simulation is typically n times greater than the corresponding classical simulation. To address the increased computational effort of PI simulations, several approaches have been developed recently, most notably based on the idea of ring-polymer contraction which exploits either the separation of the PES into short-range and long-range contributions or the availability of a computationally inexpensive PES which can be incorporated to effectively smooth the ring-polymer PES; neither approach is satisfactory in applications to systems modeled by PESs given by on-the-fly ab initio calculations. In this article, we describe a new method, ring-polymer interpolation (RPI), which can be used to accelerate PI simulations without any prior assumptions about the PES. In simulations of liquid water modeled by an empirical PES (or force field) under ambient conditions, where quantum effects are known to play a subtle role in influencing experimental observables such as radial distribution functions, we find that RPI can accurately reproduce the results of fully-converged PI simulations, albeit with far fewer PES evaluations. This approach therefore opens the possibility of large-scale PI simulations using ab initio PESs evaluated on-the-fly without the drawbacks of current methods.

1.
R. P.
Feynman
and
A. R.
Hibbs
,
Quantum Mechanics and Path Integrals
(
McGraw-Hill
,
New York
,
1965
).
2.
D.
Marx
and
J.
Hutter
,
Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods
(
Cambridge University Press
,
2009
).
3.
A. M.
Reilly
,
S.
Habershon
,
C. A.
Morrison
, and
D. W. H.
Rankin
,
J. Chem. Phys.
132
,
094502
(
2010
).
4.
A. M.
Reilly
,
S.
Habershon
,
C. A.
Morrison
, and
D. W. H.
Rankin
,
J. Chem. Phys.
132
,
134511
(
2010
).
5.
T. E.
Markland
and
D. E.
Manolopoulos
,
J. Chem. Phys.
129
,
024105
(
2008
).
6.
M.
Ceriotti
,
M.
Parrinello
,
T. E.
Markland
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
133
,
124104
(
2010
).
7.
M.
Ceriotti
,
D. E.
Manolopoulos
, and
M.
Parrinello
,
J. Chem. Phys.
134
,
084104
(
2011
).
8.
M.
Parrinello
and
A.
Rahman
,
J. Chem. Phys.
80
,
860
(
1984
).
9.
R.
Ramírez
,
C. P.
Herrero
,
A.
Antonelli
, and
E. R.
Hernández
,
J. Chem. Phys.
129
,
064110
(
2008
).
10.
J.
Morales
and
K.
Singer
,
Mol. Phys.
73
,
873
(
1991
).
11.
R. P.
Steele
,
J.
Zwickl
,
P.
Shushkov
, and
J. C.
Tully
,
J. Chem. Phys.
134
,
074112
(
2011
).
12.
J. R.
Schmidt
and
J. C.
Tully
,
J. Chem. Phys.
127
,
094103
(
2007
).
13.
S.
Habershon
and
D. E.
Manolopoulos
,
J. Chem. Phys.
135
,
224111
(
2011
).
14.
S.
Habershon
,
Phys. Chem. Chem. Phys.
16
,
9154
(
2014
).
15.
T.
Spura
,
C.
John
,
S.
Habershon
, and
T. D.
Kühne
,
Mol. Phys.
113
,
808
(
2015
).
16.
S.
Habershon
,
T. E.
Markland
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
131
,
024501
(
2009
).
17.
A.
Wallqvist
and
B.
Berne
,
Chem. Phys. Lett.
117
,
214
(
1985
).
18.
V.
Kapil
,
J.
VandeVondele
, and
M.
Ceriotti
,
J. Chem. Phys.
144
,
054111
(
2016
).
19.
O.
Marsalek
and
T. E.
Markland
,
J. Chem. Phys.
144
,
054112
(
2016
).
20.
R. A.
Kuharski
and
P. J.
Rossky
,
J. Chem. Phys.
82
,
5164
(
1985
).
21.
L. H.
de la Pena
and
P. G.
Kusalik
,
J. Chem. Phys.
121
,
5992
(
2004
).
22.
L. H.
de la Pena
and
P. G.
Kusalik
,
J. Chem. Phys.
125
,
054512
(
2006
).
23.
S.
Habershon
,
G. S.
Fanourgakis
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
129
,
074501
(
2008
).
24.
S.
Habershon
and
D. E.
Manolopoulos
,
J. Chem. Phys.
131
,
244518
(
2009
).
25.
T. F.
Miller
 III
and
D. E.
Manolopoulos
,
J. Chem. Phys.
123
,
154504
(
2005
).
26.
B.
Chen
,
I.
Ivanov
,
M. L.
Klein
, and
M.
Parrinello
,
Phys. Rev. Lett.
91
,
215503
(
2003
).
27.
C.
Alhambra
,
J.
Gao
,
J. C.
Corchado
,
J.
Villà
, and
D. G.
Truhlar
,
J. Am. Chem. Soc.
121
,
2253
(
1999
).
28.
N.
Boekelheide
,
R.
Salomón-Ferrer
, and
T. F.
Miller
 III
,
Proc. Natl. Acad. Sci. U. S. A.
108
,
16159
(
2011
).
29.
D. G.
Truhlar
,
J.
Gao
,
C.
Alhambra
,
M.
Garcia-Viloca
,
J.
Corchado
,
M. L.
Sánchez
, and
J.
Villà
,
Acc. Chem. Res.
35
,
341
(
2002
).
30.
M. H. M.
Olsson
,
P. E. M.
Siegbahn
, and
A.
Warshel
,
J. Am. Chem. Soc.
126
,
2820
(
2004
).
31.
I. R.
Craig
and
D. E.
Manolopoulos
,
J. Chem. Phys.
121
,
3368
(
2004
).
32.
I. R.
Craig
and
D. E.
Manolopoulos
,
J. Chem. Phys.
122
,
084106
(
2005
).
33.
I. R.
Craig
and
D. E.
Manolopoulos
,
J. Chem. Phys.
123
,
034102
(
2005
).
34.
T. F.
Miller
and
D. E.
Manolopoulos
,
J. Chem. Phys.
122
,
184503
(
2005
).
35.
B. J.
Braams
and
D. E.
Manolopoulos
,
J. Chem. Phys.
125
,
124105
(
2006
).
36.
A. R.
Menzeleev
and
T. F.
Miller
,
J. Chem. Phys.
132
,
034106
(
2010
).
37.
S.
Habershon
,
B. J.
Braams
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
127
,
174108
(
2007
).
38.
T. E.
Markland
,
S.
Habershon
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
128
,
194506
(
2008
).
39.
X. C.
Huang
,
S.
Habershon
, and
J. M.
Bowman
,
Chem. Phys. Lett.
450
,
253
(
2008
).
40.
S.
Habershon
,
D. E.
Manolopoulos
,
T. E.
Markland
, and
T. F.
Miller
,
Annu. Rev. Phys. Chem.
64
,
387
(
2013
).
41.
T. J. H.
Hele
,
M. J.
Willatt
,
A.
Muolo
, and
S. C.
Althorpe
,
J. Chem. Phys.
142
,
191101
(
2015
).
42.
E.
Geva
,
Q.
Shi
, and
G. A.
Voth
,
J. Chem. Phys.
115
,
9209
(
2001
).
43.
G. A.
Voth
,
Adv. Chem. Phys.
93
,
135
(
2007
).
44.
S.
Jang
and
G. A.
Voth
,
J. Chem. Phys.
111
,
2371
(
1999
).
45.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
100
,
5106
(
1994
).
46.
F.
Paesani
and
G. A.
Voth
,
J. Chem. Phys.
132
,
014105
(
2010
).
47.
J. O.
Richardson
and
S. C.
Althorpe
,
J. Chem. Phys.
131
,
214106
(
2009
).
48.
A. R.
Menzeleev
,
N.
Ananth
, and
T. F.
Miller
,
J. Chem. Phys.
135
,
074106
(
2011
).
49.
T. E.
Markland
and
D. E.
Manolopoulos
,
Chem. Phys. Lett.
464
,
256
(
2008
).
50.
C.
John
,
T.
Spura
,
S.
Habershon
, and
T. D.
Kühne
,
Phys. Rev. E
93
,
043305
(
2016
).
51.
T.
Hastie
,
R.
Tibshirani
, and
J.
Friedman
,
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
, Springer Series in Statistics (
Springer
,
New York
,
2009
).
52.
C. E.
Rasmussen
and
C.
Williams
,
Gaussian Processes for Machine Learning
(
MIT Press
,
2006
).
53.
K.
Vu
,
J. C.
Snyder
,
L.
Li
,
M.
Rupp
,
B. F.
Chen
,
T.
Khelif
,
K.-R.
Müller
, and
K.
Burke
,
Int. J. Quantum Chem.
115
,
1115
(
2015
).
54.
D.
Chandler
,
Introduction to Modern Statistical Mechanics
(
Oxford University Press
,
Oxford, UK
,
1987
).
55.
M. E.
Tuckerman
,
Statistical Mechanics: Theory and Molecular Simulation
(
Oxford University Press
,
2012
).
56.
T. J. H.
Hele
and
S. C.
Althorpe
,
J. Chem. Phys.
138
,
084108
(
2013
).
57.
T. J. H.
Hele
,
M. J.
Willatt
,
A.
Muolo
, and
S. C.
Althorpe
,
J. Chem. Phys.
142
,
134103
(
2015
).
58.
G. S.
Fanourgakis
,
T. E.
Markland
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
131
,
094102
(
2009
).
59.
G.
Krilov
and
B. J.
Berne
,
J. Chem. Phys.
111
,
9147
(
1999
).
60.
E.
Anderson
,
Z.
Bai
,
C.
Bischof
,
S.
Blackford
,
J.
Demmel
,
J.
Dongarra
,
J.
Du Croz
,
A.
Greenbaum
,
S.
Hammarling
,
A.
McKenney
, and
D.
Sorensen
,
LAPACK Users’ Guide
, 3rd ed. (
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
,
1999
).
61.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
,
Phys. Rev. Lett.
104
,
136403
(
2010
).
62.
A. P.
Bartók
,
M. J.
Gillan
,
F. R.
Manby
, and
G.
Csányi
,
Phys. Rev. B
88
,
054104
(
2013
).
63.
H. C.
Andersen
,
J. Chem. Phys.
72
,
2384
(
1980
).
64.
M. F.
Herman
,
E. J.
Bruskin
, and
B. J.
Berne
,
J. Chem. Phys.
76
,
5150
(
1982
).
You do not currently have access to this content.