The equation of state and the structure of liquid carbon are studied by molecular simulation. Both classical and quantum molecular dynamics (QMD) are used to calculate the equation of state and the distribution of chemical bonds at 6000 K in the pressure range 1–25 GPa. Our calculations and results of other authors show that liquid carbon has a fairly low density on the order of 1.2–1.35 g/cm3 at pressures about 1 GPa. Owing to the coordination number analysis, this fact can be attributed to the high content of sp1-bonded atoms (more than 50% according to our ab initio computations). Six empirical potentials have been tested in order to describe the density dependence of pressure and structure at 6000 K. As a result, only one potential, ReaxFF/lg, was able to reproduce the QMD simulations for both the equation of state and the fraction of sp1, sp2, sp3-bonded atoms.

1.
A. Y.
Basharin
,
I. Y.
Lysenko
, and
M. A.
Turchaninov
,
High Temp.
50
,
464
(
2012
).
2.
V. S.
Dozhdikov
,
A. Y.
Basharin
, and
P. R.
Levashov
,
J. Phys.: Conf. Ser.
653
,
012091
(
2015
).
3.
N. A.
Marks
, in
Computer-Based Modeling of Novel Carbon Systems and Their Properties: Beyond Nanotubes
, edited by
L.
Colombo
and
A.
Fasolino
(
Springer
,
2010
), p.
129
.
4.
J.
Sung
and
J.
Lin
,
Diamond Nanotechnology: Synthesis and Applications
(
Pan Stanford Publishing
,
2009
).
5.
A. Y.
Basharin
,
V. S.
Dozhdikov
,
V. T.
Dubinchuk
,
A. V.
Kirillin
,
I. Y.
Lysenko
, and
M. A.
Turchaninov
,
Tech. Phys. Lett.
35
,
428
(
2009
).
6.
N. A.
Marks
,
Phys. Rev. B
63
,
035401
(
2000
).
7.
T.
Kumagai
,
S.
Hara
,
J.
Choi
,
S.
Izumi
, and
T.
Kato
,
J. Appl. Phys.
105
,
064310
(
2009
).
8.
L.
Li
,
M.
Xu
,
W.
Song
,
A.
Ovcharenko
,
G.
Zhang
, and
D.
Jia
,
Appl. Surf. Sci.
286
,
287
(
2013
).
9.
Z.
Sha
,
P.
Branicio
,
Q.
Pei
,
V.
Sorkin
, and
Y.
Zhang
,
Comput. Mater. Sci.
67
,
146
(
2013
).
10.
N.
Marks
,
N.
Cooper
,
D.
McKenzie
,
D.
McCulloch
,
P.
Bath
, and
S.
Russo
,
Phys. Rev. B
65
,
075411
(
2002
).
11.
A.
Harada
,
F.
Shimojo
, and
K.
Hoshino
,
J. Phys. Soc. Jpn.
72
,
822
(
2003
).
12.
C.
de Tomas
,
I.
Suarez-Martinez
, and
N. A.
Marks
,
Carbon
109
,
681
(
2016
).
13.
A.
Savvatimskiy
,
J. Phys.: Condens. Matter
20
,
114112
(
2008
).
14.
A.
Kondratyev
,
V.
Korobenko
, and
A.
Rakhel
,
Carbon
100
,
537
(
2016
).
15.
A.
Kondratyev
,
V.
Korobenko
, and
A.
Rakhel
,
J. Phys.: Condens. Matter
28
,
265501
(
2016
).
16.
F.
Colonna
,
J.
Los
,
A.
Fasolino
, and
E.
Meijer
,
Phys. Rev. B
80
,
134103
(
2009
).
17.
N.
Orekhov
and
V.
Stegailov
,
Carbon
87
,
358
(
2015
).
18.
J. N.
Glosli
and
F. H.
Ree
,
Phys. Rev. Lett.
82
,
4659
(
1999
).
19.
L. M.
Ghiringhelli
,
C.
Valeriani
,
J.
Los
,
E. J.
Meijer
,
A.
Fasolino
, and
D.
Frenkel
,
Mol. Phys.
106
,
2011
(
2008
).
20.
Y.
He
,
H.
Li
,
Y.
Jiang
,
X.
Li
, and
X.
Bian
,
Sci. Rep.
4
,
3635
(
2014
).
21.
P.
Tarakeshwar
,
P. R.
Buseck
, and
H. W.
Kroto
,
J. Phys. Chem. Lett.
7
,
1675
(
2016
).
22.
A. A.
Kurnosov
,
I. V.
Rubtsov
,
A. O.
Maksymov
, and
A. L.
Burin
,
J. Chem. Phys.
145
,
034903
(
2016
).
23.
C.
Ma
,
J.
Xiao
, and
G.
Yang
,
J. Mater. Chem. C
4
,
4692
(
2016
).
24.
M.
Liu
,
V. I.
Artyukhov
,
H.
Lee
,
F.
Xu
, and
B. I.
Yakobson
,
ACS Nano
7
,
10075
(
2013
).
25.
Q.
Sun
,
L.
Cai
,
S.
Wang
,
R.
Widmer
,
H.
Ju
,
J.
Zhu
,
L.
Li
,
Y.
He
,
P.
Ruffieux
,
R.
Fasel
, and
W.
Xu
,
J. Am. Chem. Soc.
138
,
1106
(
2016
).
26.
X.
Tu
,
H.
Wang
,
Z.
Shen
,
Y.
Wang
,
S.
Sanvito
, and
S.
Hou
,
J. Chem. Phys.
145
,
244702
(
2016
).
28.
H.
Leider
,
O.
Krikorian
, and
D.
Young
,
Carbon
11
,
555
(
1973
).
29.
C.
Ronchi
,
R.
Beukers
,
H.
Heinz
,
J.
Hiernaut
, and
R.
Selfslag
,
Int. J. Thermophys.
13
,
107
(
1992
).
30.
A.
Ferraz
and
N.
March
,
Phys. Chem. Liq.
8
,
289
(
1979
).
31.
M.
Musella
,
C.
Ronchi
,
M.
Brykin
, and
M.
Sheindlin
,
J. Appl. Phys.
84
,
2530
(
1998
).
32.
A.
Cavalleri
,
K.
Sokolowski-Tinten
,
D.
Von der Linde
,
I.
Spagnolatti
,
M.
Bernasconi
,
G.
Benedek
,
A.
Podestà
, and
P.
Milani
,
Europhys. Lett.
57
,
281
(
2002
).
33.
J.
Morris
,
C.
Wang
, and
K.
Ho
,
Phys. Rev. B
52
,
4138
(
1995
).
34.
S.
Johnson
,
P.
Heimann
,
A.
MacPhee
,
A.
Lindenberg
,
O.
Monteiro
,
Z.
Chang
,
R.
Lee
, and
R.
Falcone
,
Phys. Rev. Lett.
94
,
057407
(
2005
).
36.
A.
Hu
,
M.
Rybachuk
,
Q.-B.
Lu
, and
W.
Duley
,
Appl. Phys. Lett.
91
,
131906
(
2007
).
37.
A.
Savvatimskiy
,
S.
Onufriev
, and
A.
Kondratyev
,
Carbon
98
,
534
(
2016
).
38.
G.
Galli
,
R. M.
Martin
,
R.
Car
, and
M.
Parrinello
,
Phys. Rev. B
42
,
7470
(
1990
).
39.
M.
Van Thiel
and
F.
Ree
,
Phys. Rev. B
48
,
3591
(
1993
).
40.
C.
Wang
,
K.
Ho
, and
C. T.
Chan
,
Phys. Rev. B
47
,
14835
(
1993
).
41.
C. J.
Wu
,
J. N.
Glosli
,
G.
Galli
, and
F. H.
Ree
,
Phys. Rev. Lett.
89
,
135701
(
2002
).
42.
O.
Kum
,
F. H.
Ree
,
S. J.
Stuart
, and
C. J.
Wu
,
J. Chem. Phys.
119
,
6053
(
2003
).
43.
L. M.
Ghiringhelli
,
J. H.
Los
,
E. J.
Meijer
,
A.
Fasolino
, and
D.
Frenkel
,
Phys. Rev. B
69
,
100101
(
2004
).
44.
L. M.
Ghiringhelli
,
J. H.
Los
,
A.
Fasolino
, and
E. J.
Meijer
,
Phys. Rev. B
72
,
214103
(
2005
).
45.
M.
French
and
T. R.
Mattsson
,
J. Appl. Phys.
116
,
013510
(
2014
).
46.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
47.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
48.
V. L.
Deringer
and
G.
Csányi
,
Phys. Rev. B
95
,
094203
(
2017
).
49.
A.
Savvatimskiy
,
Carbon at High Temperatures
, Springer Series in Materials Science Vol. 134 (
Springer
,
Heidelberg
,
2015
).
51.
F.
Bundy
,
W.
Bassett
,
M.
Weathers
,
R.
Hemley
,
H.
Mao
, and
A.
Goncharov
,
Carbon
34
,
141
(
1996
).
52.
A. V.
Kirillin
,
M.
Kovalenko
,
M. A.
Sheindlin
, and
V.
Zhivopistsev
,
High Temp.
23
,
557
(
1985
).
53.
M.
Togaya
,
Phys. Rev. Lett.
79
,
2474
(
1997
).
54.
V. Y.
Ternovoi
and
D. N.
Nikolaev
, in
Scientific–Coordination Session on “Non-Ideal Plasma Physics,” 2–3 December 2014, Moscow, Russia, 2014
, http://www.ihed.ras.ru/npp2014/program/restore.php?id=1015.
56.
S. J.
Stuart
,
A. B.
Tutein
, and
J. A.
Harrison
,
J. Chem. Phys.
112
,
6472
(
2000
).
57.
D. W.
Brenner
,
O. A.
Shenderova
,
J. A.
Harrison
,
S. J.
Stuart
,
B.
Ni
, and
S. B.
Sinnott
,
J. Phys.: Condens. Matter
14
,
783
(
2002
).
58.
A. C.
van Duin
,
S.
Dasgupta
,
F.
Lorant
, and
W. A.
Goddard
 III
,
J. Phys. Chem. A
105
,
9396
(
2001
).
59.
K.
Chenoweth
,
A. C.
Van Duin
, and
W. A.
Goddard
 III
,
J. Phys. Chem. A
112
,
1040
(
2008
).
60.
H. M.
Aktulga
,
J. C.
Fogarty
,
S. A.
Pandit
, and
A. Y.
Grama
,
Parallel Comput.
38
,
245
(
2012
).
61.
T. R.
Mattsson
,
J. M. D.
Lane
,
K. R.
Cochrane
,
M. P.
Desjarlais
,
A. P.
Thompson
,
F.
Pierce
, and
G. S.
Grest
,
Phys. Rev. B
81
,
054103
(
2010
).
62.
A.
Strachan
,
A. C.
van Duin
,
D.
Chakraborty
,
S.
Dasgupta
, and
W. A.
Goddard
 III
,
Phys. Rev. Lett.
91
,
098301
(
2003
).
63.
J. E.
Mueller
,
A. C.
van Duin
, and
W. A.
Goddard
 III
,
J. Phys. Chem. C
114
,
4939
(
2010
).
64.
L.
Liu
,
Y.
Liu
,
S. V.
Zybin
,
H.
Sun
, and
W. A.
Goddard
 III
,
J. Phys. Chem. A
115
,
11016
(
2011
).
65.
S. G.
Srinivasan
,
A. C.
Van Duin
, and
P.
Ganesh
,
J. Phys. Chem. A
119
,
571
(
2015
).
66.
See supplementary material in http://pubs.acs.org/doi/suppl/10.1021/jp510274e Ref. 65.
67.
A. D.
Bochevarov
,
E.
Harder
,
T. F.
Hughes
,
J. R.
Greenwood
,
D. A.
Braden
,
D. M.
Philipp
,
D.
Rinaldo
,
M. D.
Halls
,
J.
Zhang
, and
R. A.
Friesner
,
Int. J. Quantum Chem.
113
,
2110
(
2013
).
68.
B. D.
Jensen
,
A.
Bandyopadhyay
,
K. E.
Wise
, and
G. M.
Odegard
,
J. Chem. Theory Comput.
8
,
3003
(
2012
).
69.
K. L.
Joshi
,
S.
Raman
, and
A. C. T.
van Duin
,
J. Phys. Chem. Lett.
4
,
3792
(
2013
).
70.
S. B.
Kylasa
,
H. M.
Aktulga
, and
A. Y.
Grama
,
J. Comput. Phys.
272
,
343
(
2014
).
71.
D.
McKenzie
,
A.
Merchant
,
D.
McCulloch
,
H.
Malloch
,
N.
Marks
, and
M.
Bilek
,
Surf. Coat. Technol.
198
,
212
(
2005
).
72.
N.
Marzari
,
A. A.
Mostofi
,
J. R.
Yates
,
I.
Souza
, and
D.
Vanderbilt
,
Rev. Mod. Phys.
84
,
1419
(
2012
).
You do not currently have access to this content.