In molecular dynamics simulations and single molecule experiments, observables are usually measured along dynamic trajectories and then averaged over an ensemble (“bundle”) of trajectories. Under stationary conditions, the time-evolution of such averages is described by the generalized Langevin equation. By contrast, if the dynamics is not stationary, it is not a priori clear which form the equation of motion for an averaged observable has. We employ the formalism of time-dependent projection operator techniques to derive the equation of motion for a non-equilibrium trajectory-averaged observable as well as for its non-stationary auto-correlation function. The equation is similar in structure to the generalized Langevin equation but exhibits a time-dependent memory kernel as well as a fluctuating force that implicitly depends on the initial conditions of the process. We also derive a relation between this memory kernel and the autocorrelation function of the fluctuating force that has a structure similar to a fluctuation-dissipation relation. In addition, we show how the choice of the projection operator allows us to relate the Taylor expansion of the memory kernel to data that are accessible in MD simulations and experiments, thus allowing us to construct the equation of motion. As a numerical example, the procedure is applied to Brownian motion initialized in non-equilibrium conditions and is shown to be consistent with direct measurements from simulations.

1.
J. T.
Padding
and
W. J.
Briels
,
J. Phys.: Condens. Matter
23
,
233101
(
2011
).
2.
H. J. C.
Berendsen
,
Simulating the Physical World
(
Cambridge University Press
,
2007
).
3.
S.
Kmiecik
,
D.
Gront
,
M.
Kolinski
,
L.
Wieteska
,
A.
Dawid
, and
A.
Kolinski
,
Chem. Rev.
116
,
7898
(
2016
).
4.
S. A.
Harris
,
Contemp. Phys.
45
,
11
(
2004
).
5.
T.
Hoffmann
and
L.
Dougan
,
Chem. Soc. Rev.
41
,
4781
(
2012
).
6.
D. S.
Lemons
and
A.
Gythiel
,
Am. J. Phys.
65
,
1079
(
1997
).
7.
R.
Zwanzig
,
Phys. Rev.
124
,
983
(
1961
).
8.
H.
Mori
,
Prog. Theor. Phys.
33
,
423
(
1965
).
9.
W.
Götze
,
Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory
(
OUP Oxford
,
2008
), Vol. 143.
10.
P.
Español
and
H.
Löwen
,
J. Chem. Phys.
131
,
244101
(
2009
).
11.
K.
Kawasaki
and
J. D.
Gunton
,
Phys. Rev. A
8
,
2048
(
1973
).
12.
C. R.
Willis
and
R. H.
Picard
,
Phys. Rev. A
9
,
1343
(
1974
).
13.
H.
Furukawa
,
Prog. Theor. Phys.
62
,
70
90
(
1979
).
14.
H.
Grabert
,
Projection Operator Techniques in Nonequilibrium Statistical Mechanics
(
Springer
,
1982
).
15.
O.
Linden
and
V.
May
,
Phys. A
254
,
411
432
(
1998
).
16.
M.
Fuchs
and
M. E.
Cates
,
J. Rheol.
53
,
957
(
2009
).
17.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
(
Elsevier
,
1990
).
18.
A. V.
Mokshin
,
R. M.
Yulmetyev
, and
P.
Hänggi
,
Phys. Rev. Lett.
95
,
200601
(
2005
).
19.
L.
Stella
,
C. D.
Lorenz
, and
L.
Kantorovich
,
Phys. Rev. B
89
,
134303
(
2014
).
20.
R.
Kubo
,
Rep. Prog. Phys.
29
,
255
(
1966
).
21.
P.
Calabrese
and
A.
Gambassi
,
J. Phys. A: Math. Gen.
38
,
R133
(
2005
).
22.
G.
Verley
,
R.
Chétrite
, and
D.
Lacoste
,
J. Stat. Mech.: Theory Exp.
2011
,
P10025
.
23.
D. C.
Wallace
,
E. D.
Chisolm
, and
G.
De Lorenzi-Venneri
,
J. Phys.: Condens. Matter
29
,
055101
(
2016
).
24.
Y.
Pomeau
and
P.
Resibois
,
Phys. Rep.
19
,
63
(
1975
).
25.
N.
Corngold
,
Phys. Rev. A
6
,
1570
(
1972
).
26.
A.
Caldeira
and
A. J.
Leggett
,
Ann. Phys.
149
,
374
(
1983
).
27.
E.
Cortés
,
B. J.
West
, and
K.
Lindenberg
,
J. Chem. Phys.
82
,
2708
(
1985
).
28.
Z.
Li
,
H. S.
Lee
,
E.
Darve
, and
G. E.
Karniadakis
,
J. Chem. Phys.
146
,
014104
(
2017
).
29.
S.
Steffenoni
,
K.
Kroy
, and
G.
Falasco
,
Phys. Rev. E
94
,
062139
(
2016
).
30.
G.
Jung
,
M.
Hanke
, and
F.
Schmid
,
J. Chem. Theory Comput.
13
,
2481
(
2017
).
31.
H.
Lei
,
N. A.
Baker
, and
X.
Li
,
Proc. Natl. Acad. Sci. U. S. A.
113
,
14183
14188
(
2016
).
You do not currently have access to this content.