A microscopic theory of dielectric relaxation of the hexagonal ice (Ih) is proposed based on the multiple-trapping model. The theory explains the distinctive peculiarities of the relaxation time temperature behavior and the peak broadening parameter in a wide temperature range from the unified positions.

1.
R. P.
Auty
and
R. H.
Cole
, “
Dielectric properties of ice and solid D2O
,”
J. Chem. Phys.
20
,
1309
1314
(
1952
).
2.
G. P.
Johari
and
S. J.
Jones
, “
The orientation polarization in hexagonal ice parallel and perpendicular to the c-axis
,”
J. Glaciol.
21
,
259
276
(
1978
).
3.
S. R.
Gough
and
D. W.
Davidson
, “
Dielectric behavior of cubic and hexagonal ices at low temperatures
,”
J. Chem. Phys.
52
,
5442
(
1970
).
4.
G. P.
Johari
and
S. J.
Jones
, “
Dielectric properties of polycrystalline D2O ice Ih (hexagonal)
,”
Proc. R. Soc. A
349
,
467
495
(
1976
).
5.
G. P.
Johari
and
E.
Whalley
, “
The dielectric-properties of ice Ih in the range 272–133 K
,”
J. Chem. Phys.
75
,
1333
1340
(
1981
).
6.
S.
Kawada
, “
Dielectric anisotropy in ice Ih
,”
J. Phys. Soc. Jpn.
44
,
1881
1886
(
1978
).
7.
S.
Kawada
, “
Dielectric-properties of heavy ice Ih (D2O ice)
,”
J. Phys. Soc. Jpn.
47
,
1850
1856
(
1979
).
8.
S. S. N.
Murthy
, “
Slow relaxation in ice and ice clathrates and its connection to the low-temperature phase transition induced by dopants
,”
Phase Transitions
75
,
487
506
(
2002
).
9.
K.
Sasaki
,
R.
Kita
,
N.
Shinyashiki
, and
S.
Yagihara
, “
Dielectric relaxation time of ice-Ih with different preparation
,”
J. Phys. Chem. B
120
,
3950
3953
(
2016
).
10.
O.
Worz
and
R. H.
Cole
, “
Dielectric properties of ice Ih
,”
J. Chem. Phys.
51
,
1546
(
1969
).
11.
N.
Shinyashiki
,
W.
Yamamoto
,
A.
Yokoyama
,
T.
Yoshinari
,
S.
Yagihara
,
R.
Kita
,
K. L.
Ngai
, and
S.
Capaccioli
, “
Glass transitions in aqueous solutions of protein (Bovine Serum albumin)
,”
J. Phys. Chem. B
113
,
14448
14456
(
2009
).
12.
I.
Popov
,
A.
Puzenko
,
A.
Khamzin
, and
Y.
Feldman
, “
The dynamic crossover in dielectric relaxation behavior of ice I-h
,”
Phys. Chem. Chem. Phys.
17
,
1489
1497
(
2015
).
13.
C.
Jaccard
,
Etude Théorique et Expérimentale des Propriétés électriques de la Glace
(
Institut de Physique, E.P.F.
,
Zürich
,
1959
).
14.
C.
Jaccard
, “
Thermodynamics of irreversible processes applied to ice
,”
Phys. Kondens. Mater.
3
,
99
118
(
1964
).
15.
D. S.
Eisenberg
and
W.
Kauzmann
,
The Structure and Properties of Water
(
Clarendon Press, Oxford University Press
,
Oxford, New York
,
2005
).
16.
P. V.
Hobbs
,
Ice Physics
(
Oxford University Press
,
New York
,
2010
).
17.
V. F.
Petrenko
and
R. W.
Whitworth
,
Physics of Ice
(
Oxford University Press
,
Oxford, New York
,
1999
).
18.
N.
Agmon
, “
The Grotthuss mechanism
,”
Chem. Phys. Lett.
244
,
456
462
(
1995
).
19.
N.
Bjerrum
, “
Structure and properties of ice
,”
Science
115
,
385
390
(
1952
).
20.
N.
Grishina
and
V.
Buch
, “
Structure and dynamics of orientational defects in ice I
,”
J. Chem. Phys.
120
,
5217
5225
(
2004
).
21.
R.
Podeszwa
and
V.
Buch
, “
Structure and dynamics of orientational defects in ice
,”
Phys. Rev. Lett.
83
,
4570
4573
(
1999
).
22.
F.
Sciortino
,
A.
Geiger
, and
H. E.
Stanley
, “
Effect of defects on molecular mobility in liquid water
,”
Nature
354
,
218
221
(
1991
).
23.
F.
Sciortino
,
A.
Geiger
, and
H. E.
Stanley
, “
Network defects and molecular mobility in liquid water
,”
J. Chem. Phys.
96
,
3857
3865
(
1992
).
24.
A.
Vonhippel
, “
The dielectric-relaxation spectra of water, ice, and aqueous-solutions, and their Interpretation. 3. Proton organization and proton-transfer in ice
,”
IEEE Trans. Electr. Insul.
23
,
825
840
(
1988
).
25.
I.
Popov
,
I.
Lunev
,
A.
Khamzin
,
A.
Greenbaum
,
Y.
Gusev
, and
Y.
Feldman
, “
The low-temperature dynamic crossover in dielectric relaxation of ice Ih
,”
Phys. Chem. Chem. Phys.
19
,
28610
(
2017
).
26.
A. A.
Khamzin
,
R. R.
Nigmatullin
, and
I. I.
Popov
, “
Log-periodic corrections to the Cole–Cole expression in dielectric relaxation
,”
Phys. A
392
,
136
148
(
2013
).
27.
A. A.
Khamzin
,
R. R.
Nigmatullin
, and
I. I.
Popov
, “
Microscopic model of a non-Debye dielectric relaxation: The Cole–Cole law and its generalization
,”
Theor. Math. Phys.
173
(
2
),
1604
1619
(
2012
).
28.
D. L.
Sidebottom
,
Rev. Mod. Phys.
81
,
999
(
2009
).
29.
F. W.
Schmidlin
, “
Theory of multiple trapping
,”
Solid State Commun.
22
,
451
453
(
1977
).
30.
J.
Noolandi
, “
Multiple-trapping model of anomalous transit-time dispersion in a-Se
,”
Phys. Rev. B
16
,
4466
4473
(
1977
).
31.
V. I.
Arkhipov
and
A. I.
Rudenko
, “
Drift and diffision in materials with traps. I. Quasi-equilibrium transport regime
,”
Philos. Mag. B
45
,
177
187
(
1982
).
32.
V. I.
Arkhipov
and
A. I.
Rudenko
, “
Drift and diffusion in materials with traps. II. Non-equilibrium transport regime
,”
Philos. Mag. B
45
,
189
207
(
1982
).
33.
T.
Tiedje
,
The Physics of Hydrogenated Amorphous Silicon II: Electronic and Vibrational Properties
, edited by
J. D.
Joannopoulos
and
G.
Lucovsky
(
Springer-Verlag
,
Berlin
,
1984
).
34.
V. R.
Nikitenko
,
H.
von Seggern
, and
H.
Bässler
, “
Non-equilibrium transport of charge carriers in disordered organic materials
,”
J. Phys.: Condens. Matter
19
,
136210-1
136201-15
(
2007
).
35.
S. G.
Samko
,
A. A.
Kilbas
, and
O. I.
Marichev
,
Fractional Integrals and Derivatives: Theory and Applications
(
Gordon and Breach Science Publishers
,
Philadelphia, PA
,
1993
).
36.
R.
Gorenflo
,
A. A.
Kilbas
,
F.
Mainardi
, and
S.
Rogosin
,
Mittag-Leffler Functions. Theory and Applications
, Springer Monographs in Mathematics (
Springer
,
Berlin
,
2014
).
37.
I.
Popov
,
P.
Ben Ishai
,
A.
Khamzin
, and
Y.
Feldman
, “
The mechanism of the dielectric relaxation in water
,”
Phys. Chem. Chem. Phys.
18
,
13941
13953
(
2016
).
You do not currently have access to this content.