A microscopic theory of dielectric relaxation of the hexagonal ice (Ih) is proposed based on the multiple-trapping model. The theory explains the distinctive peculiarities of the relaxation time temperature behavior and the peak broadening parameter in a wide temperature range from the unified positions.
REFERENCES
1.
R. P.
Auty
and R. H.
Cole
, “Dielectric properties of ice and solid D2O
,” J. Chem. Phys.
20
, 1309
–1314
(1952
).2.
G. P.
Johari
and S. J.
Jones
, “The orientation polarization in hexagonal ice parallel and perpendicular to the c-axis
,” J. Glaciol.
21
, 259
–276
(1978
).3.
S. R.
Gough
and D. W.
Davidson
, “Dielectric behavior of cubic and hexagonal ices at low temperatures
,” J. Chem. Phys.
52
, 5442
(1970
).4.
G. P.
Johari
and S. J.
Jones
, “Dielectric properties of polycrystalline D2O ice Ih (hexagonal)
,” Proc. R. Soc. A
349
, 467
–495
(1976
).5.
G. P.
Johari
and E.
Whalley
, “The dielectric-properties of ice Ih in the range 272–133 K
,” J. Chem. Phys.
75
, 1333
–1340
(1981
).6.
S.
Kawada
, “Dielectric anisotropy in ice Ih
,” J. Phys. Soc. Jpn.
44
, 1881
–1886
(1978
).7.
S.
Kawada
, “Dielectric-properties of heavy ice Ih (D2O ice)
,” J. Phys. Soc. Jpn.
47
, 1850
–1856
(1979
).8.
S. S. N.
Murthy
, “Slow relaxation in ice and ice clathrates and its connection to the low-temperature phase transition induced by dopants
,” Phase Transitions
75
, 487
–506
(2002
).9.
K.
Sasaki
, R.
Kita
, N.
Shinyashiki
, and S.
Yagihara
, “Dielectric relaxation time of ice-Ih with different preparation
,” J. Phys. Chem. B
120
, 3950
–3953
(2016
).10.
O.
Worz
and R. H.
Cole
, “Dielectric properties of ice Ih
,” J. Chem. Phys.
51
, 1546
(1969
).11.
N.
Shinyashiki
, W.
Yamamoto
, A.
Yokoyama
, T.
Yoshinari
, S.
Yagihara
, R.
Kita
, K. L.
Ngai
, and S.
Capaccioli
, “Glass transitions in aqueous solutions of protein (Bovine Serum albumin)
,” J. Phys. Chem. B
113
, 14448
–14456
(2009
).12.
I.
Popov
, A.
Puzenko
, A.
Khamzin
, and Y.
Feldman
, “The dynamic crossover in dielectric relaxation behavior of ice I-h
,” Phys. Chem. Chem. Phys.
17
, 1489
–1497
(2015
).13.
C.
Jaccard
, Etude Théorique et Expérimentale des Propriétés électriques de la Glace
(Institut de Physique, E.P.F.
, Zürich
, 1959
).14.
C.
Jaccard
, “Thermodynamics of irreversible processes applied to ice
,” Phys. Kondens. Mater.
3
, 99
–118
(1964
).15.
D. S.
Eisenberg
and W.
Kauzmann
, The Structure and Properties of Water
(Clarendon Press, Oxford University Press
, Oxford, New York
, 2005
).16.
17.
V. F.
Petrenko
and R. W.
Whitworth
, Physics of Ice
(Oxford University Press
, Oxford, New York
, 1999
).18.
N.
Agmon
, “The Grotthuss mechanism
,” Chem. Phys. Lett.
244
, 456
–462
(1995
).19.
N.
Bjerrum
, “Structure and properties of ice
,” Science
115
, 385
–390
(1952
).20.
N.
Grishina
and V.
Buch
, “Structure and dynamics of orientational defects in ice I
,” J. Chem. Phys.
120
, 5217
–5225
(2004
).21.
R.
Podeszwa
and V.
Buch
, “Structure and dynamics of orientational defects in ice
,” Phys. Rev. Lett.
83
, 4570
–4573
(1999
).22.
F.
Sciortino
, A.
Geiger
, and H. E.
Stanley
, “Effect of defects on molecular mobility in liquid water
,” Nature
354
, 218
–221
(1991
).23.
F.
Sciortino
, A.
Geiger
, and H. E.
Stanley
, “Network defects and molecular mobility in liquid water
,” J. Chem. Phys.
96
, 3857
–3865
(1992
).24.
A.
Vonhippel
, “The dielectric-relaxation spectra of water, ice, and aqueous-solutions, and their Interpretation. 3. Proton organization and proton-transfer in ice
,” IEEE Trans. Electr. Insul.
23
, 825
–840
(1988
).25.
I.
Popov
, I.
Lunev
, A.
Khamzin
, A.
Greenbaum
, Y.
Gusev
, and Y.
Feldman
, “The low-temperature dynamic crossover in dielectric relaxation of ice Ih
,” Phys. Chem. Chem. Phys.
19
, 28610
(2017
).26.
A. A.
Khamzin
, R. R.
Nigmatullin
, and I. I.
Popov
, “Log-periodic corrections to the Cole–Cole expression in dielectric relaxation
,” Phys. A
392
, 136
–148
(2013
).27.
A. A.
Khamzin
, R. R.
Nigmatullin
, and I. I.
Popov
, “Microscopic model of a non-Debye dielectric relaxation: The Cole–Cole law and its generalization
,” Theor. Math. Phys.
173
(2
), 1604
–1619
(2012
).28.
D. L.
Sidebottom
, Rev. Mod. Phys.
81
, 999
(2009
).29.
F. W.
Schmidlin
, “Theory of multiple trapping
,” Solid State Commun.
22
, 451
–453
(1977
).30.
J.
Noolandi
, “Multiple-trapping model of anomalous transit-time dispersion in a-Se
,” Phys. Rev. B
16
, 4466
–4473
(1977
).31.
V. I.
Arkhipov
and A. I.
Rudenko
, “Drift and diffision in materials with traps. I. Quasi-equilibrium transport regime
,” Philos. Mag. B
45
, 177
–187
(1982
).32.
V. I.
Arkhipov
and A. I.
Rudenko
, “Drift and diffusion in materials with traps. II. Non-equilibrium transport regime
,” Philos. Mag. B
45
, 189
–207
(1982
).33.
T.
Tiedje
, The Physics of Hydrogenated Amorphous Silicon II: Electronic and Vibrational Properties
, edited by J. D.
Joannopoulos
and G.
Lucovsky
(Springer-Verlag
, Berlin
, 1984
).34.
V. R.
Nikitenko
, H.
von Seggern
, and H.
Bässler
, “Non-equilibrium transport of charge carriers in disordered organic materials
,” J. Phys.: Condens. Matter
19
, 136210-1
–136201-15
(2007
).35.
S. G.
Samko
, A. A.
Kilbas
, and O. I.
Marichev
, Fractional Integrals and Derivatives: Theory and Applications
(Gordon and Breach Science Publishers
, Philadelphia, PA
, 1993
).36.
R.
Gorenflo
, A. A.
Kilbas
, F.
Mainardi
, and S.
Rogosin
, Mittag-Leffler Functions. Theory and Applications
, Springer Monographs in Mathematics (Springer
, Berlin
, 2014
).37.
I.
Popov
, P.
Ben Ishai
, A.
Khamzin
, and Y.
Feldman
, “The mechanism of the dielectric relaxation in water
,” Phys. Chem. Chem. Phys.
18
, 13941
–13953
(2016
).© 2017 Author(s).
2017
Author(s)
You do not currently have access to this content.