We present an accurate single reference coupled cluster theory in which the conventional Fock operator matrix is suitably dressed to simulate the effect of triple and higher excitations within a singles and doubles framework. The dressing thus invoked originates from a second-order perturbative approximation of a similarity transformed Hamiltonian and induces higher rank excitations through local renormalization of individual occupied and unoccupied orbital lines. Such a dressing is able to recover a significant amount of correlation effects beyond singles and doubles approximation, but only with an economic n5 additional cost. Due to the inclusion of higher rank excitations via the Fock matrix dressing, this method is a natural improvement over conventional coupled cluster theory with singles and doubles approximation, and this method would be demonstrated via applications on some challenging systems. This highly promising scheme has a conceptually simple structure which is also easily generalizable to a multi-reference coupled cluster scheme for treating strong degeneracy. We shall demonstrate that this method is a natural lowest order perturbative approximation to the recently developed iterative n-body excitation inclusive coupled cluster singles and doubles scheme [R. Maitra et al., J. Chem. Phys. 147, 074103 (2017)].

2.
F.
Coester
and
H.
Kümmel
,
Nucl. Phys.
17
,
477
(
1960
).
3.
J.
Čižek
,
J. Chem. Phys.
45
,
4256
(
1966
).
4.
J.
Čižek
, “
On the use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules
,” in
Advances in Chemical Physics: Correlation Effects in Atoms and Molecules
, edited by
R.
LeFebvre
and
C.
Moser
(
John Wiley and Sons, Inc.
,
Hoboken, NJ
,
1969
), Vol. 14, p.
35
.
5.
J.
Čižek
and
J.
Paldus
,
Int. J. Quantum Chem.
5
,
359
(
1971
).
6.
J.
Noga
and
R. J.
Bartlett
,
J. Chem. Phys.
86
,
7041
(
1987
).
7.
M.
Urban
,
J.
Noga
,
S. J.
Cole
, and
R. J.
Bartlett
,
J. Chem. Phys.
83
,
4041
(
1985
).
8.
J. D.
Watts
,
J.
Gauss
, and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
8718
(
1993
).
9.
K.
Ragavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
10.
R. J.
Bartlett
,
J. D.
Watts
,
S. A.
Kucharski
, and
J.
Noga
,
Chem. Phys. Lett.
165
,
513
(
1990
).
11.
Y. S.
Lee
,
S. A.
Kucharski
, and
R. J.
Bartlett
,
J. Chem. Phys.
81
,
5906
(
1984
).
12.
J.
Noga
,
R. J.
Bartlett
, and
M.
Urban
,
Chem. Phys. Lett.
134
,
126
(
1987
).
13.
R. J.
Bartlett
and
M.
Musiał
,
Rev. Mod. Phys.
79
,
291
(
2007
).
14.
M.
Nooijen
and
V.
Lotrich
,
J. Chem. Phys.
113
,
4549
(
2000
).
15.
R.
Maitra
,
Y.
Akinaga
, and
T.
Nakajima
,
J. Chem. Phys.
147
,
074103
(
2017
).
16.
17.
H.
Nakatsuji
,
Phys. Rev. A
14
,
41
(
1976
).
18.
H.
Nakatsuji
,
J. Chem. Phys.
113
,
2949
(
2000
).
19.
T.
van Voorhis
and
M.
Head-Gordon
,
J. Chem. Phys.
115
,
5033
(
2001
).
20.
P.
Piecuch
,
K.
Kowalski
,
P.-D.
Fan
, and
K.
Jedziniak
,
Phys. Rev. Lett.
90
,
113001
(
2003
).
21.
D.
Horn
,
M.
Karliner
, and
M.
Weinstein
,
Phys. Rev. D
31
,
2589
(
1985
).
22.
D. I.
Lyakh
and
R. J.
Bartlett
,
J. Chem. Phys.
133
,
244112
(
2011
).
23.
T.
Stein
,
T. M.
Henderson
, and
G. E.
Scuseria
,
J. Chem. Phys.
140
,
214113
(
2014
).
24.
T. M.
Henderson
,
I. W.
Bulik
,
T.
Stein
, and
G. E.
Scuseria
,
J. Chem. Phys.
141
,
244104
(
2015
).
25.
P.
Piecuch
,
S.
Kucharski
,
K.
Kowalski
, and
M.
Musiał
,
Comput. Phys. Commun.
149
,
71
(
2002
).
26.
K.
Kowalski
and
P.
Piecuch
,
J. Chem. Phys.
113
,
18
(
2000
).
27.
K.
Kowalski
and
P.
Piecuch
,
J. Chem. Phys.
113
,
5644
(
2000
).
28.
S.
Hirata
,
M.
Nooijen
,
I.
Grabowski
, and
R. J.
Bartlett
,
J. Chem. Phys.
114
,
3919
(
2001
).
29.
F. A.
Evangelista
,
J. Chem. Phys.
141
,
054109
(
2014
).
30.
J. J.
Eriksen
,
K.
Kristensen
,
T.
Kjærgaard
,
P.
Jørgensen
, and
J.
Gauss
,
J. Chem. Phys.
140
,
054108
(
2014
).
31.
J. J.
Eriksen
,
D. A.
Matthews
,
P.
Jørgensen
, and
J.
Gauss
,
J. Chem. Phys.
144
,
194102
(
2016
).
32.
P.
Piecuch
and
M.
Włoch
,
J. Chem. Phys.
123
,
224105
(
2005
).
33.
P.
Piecuch
,
M.
Włoch
,
J. R.
Gour
, and
A.
Kinal
,
Chem. Phys. Lett.
418
,
467
(
2006
).
34.
O.
Christiansen
,
H.
Koch
, and
P.
Jørgensen
,
Chem. Phys. Lett.
243
,
409
(
1995
).
35.
H.
Koch
,
O.
Christiansen
,
P.
Jørgensen
,
A. S.
de Meras
, and
T.
Helgaker
,
J. Chem. Phys.
106
,
1808
(
1997
).
36.
O.
Christiansen
,
H.
Koch
, and
P.
Jørgensen
,
J. Chem. Phys.
103
,
7429
(
1995
).
37.
D.
Mukherjee
and
S.
Pal
,
Adv. Quantum Chem.
20
,
291
(
1989
).
38.
B.
Jeziorski
and
H. J.
Monkhorst
,
Phys. Rev. A
24
,
1668
(
1981
).
39.
D.
Mukherjee
,
Chem. Phys. Lett.
125
,
207
(
1986
).
40.
U. S.
Mahapatra
,
B.
Datta
, and
D.
Mukherjee
,
Mol. Phys.
94
,
157
(
1998
).
41.
U. S.
Mahapatra
,
B.
Datta
, and
D.
Mukherjee
,
J. Chem. Phys.
110
,
6171
(
1999
).
42.
D. I.
Lyakh
,
M.
Musiał
,
V. F.
Lotrich
, and
R. J.
Bartlett
,
Chem. Rev.
112
,
182
(
2012
).
43.
N.
Oliphant
and
L.
Adamowicz
,
J. Chem. Phys.
94
,
1229
(
1991
).
44.
P.
Piecuch
and
L.
Adamowicz
,
J. Chem. Phys.
100
,
5792
(
1994
).
45.
P.
Piecuch
and
L.
Adamowicz
,
J. Chem. Phys.
100
,
5857
(
1994
).
46.
B. H.
Brandow
,
Phys. Rev.
152
,
863
(
1966
).
47.
B. H.
Brandow
,
Rev. Mod. Phys.
39
,
771
(
1967
).
48.
J. J.
Phillips
and
D.
Zgid
,
J. Chem. Phys.
140
,
241101
(
2014
).
49.
I.
Lindgren
,
Int. J. Quantum Chem.
14
(Suppl. S12),
33
(
1978
).
50.
R.
Maitra
,
D.
Sinha
, and
D.
Mukherjee
,
J. Chem. Phys.
137
,
024105
(
2012
).
51.
D.
Sinha
,
R.
Maitra
, and
D.
Mukherjee
,
J. Chem. Phys.
137
,
094104
(
2012
).
52.
M. A.
Haque
and
D.
Mukherjee
,
J. Chem. Phys.
80
,
5058
(
1984
).
53.
I.
Lindgren
and
D.
Mukherjee
,
Phys. Rep.
151
,
93
(
1987
).
54.
S.
Das
,
D.
Mukherjee
, and
M.
Kállay
,
J. Chem. Phys.
133
,
234110
(
2010
).
55.
T.
Nakajima
,
M.
Katouda
,
M.
Kamiya
, and
Y.
Nakatsuka
,
Int. J. Quantum Chem.
115
,
349
(
2015
).
56.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. J.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
,
J. Comput. Chem.
14
,
1347
(
1993
).
57.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
58.
T. H.
Dunning
,
J. Chem. Phys.
53
,
2823
(
1970
).
59.
T. H.
Dunning
and
P. J.
Hay
, in
Methods of Electronic Structure Theory
, edited by
H. F.
Schaefer
 III
(Springer,
1977
), Vol. 2.
60.
S.
Das
,
D.
Mukherjee
, and
M.
Kállay
,
J. Chem. Phys.
132
,
074103
(
2010
).
You do not currently have access to this content.