Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.

1.
X.
Ren
,
P.
Rinke
,
C.
Joas
, and
M.
Scheffler
,
J. Mater. Sci.
47
,
7447
(
2012
).
2.
H.
Eshuis
,
J. E.
Bates
, and
F.
Furche
,
Theor. Chem. Acc.
131
,
1084
(
2012
).
3.
G. P.
Chen
,
V. K.
Voora
,
M. M.
Agee
,
S. G.
Balasubramani
, and
F.
Furche
,
Annu. Rev. Phys. Chem.
68
,
421
(
2017
).
4.
D.
Langreth
and
J.
Perdew
,
Solid State Commun.
17
,
1425
(
1975
).
5.
D. C.
Langreth
and
J. P.
Perdew
,
Phys. Rev. B
15
,
2884
(
1977
).
6.
J. G.
Ángyán
,
R.-F.
Liu
,
J.
Toulouse
, and
G.
Jansen
,
J. Chem. Theory Comput.
7
,
3116
(
2011
).
7.
8.
F.
Furche
,
J. Chem. Phys.
129
,
114105
(
2008
).
9.
G. E.
Scuseria
,
T. M.
Henderson
, and
D. C.
Sorensen
,
J. Chem. Phys.
129
,
231101
(
2008
).
10.
B.
Mussard
,
D.
Rocca
,
G.
Jansen
, and
J. G.
Ángyán
,
J. Chem. Theory Comput.
12
,
2191
(
2016
).
11.
A.
Heßelmann
and
A.
Görling
,
Mol. Phys.
108
,
359
(
2010
).
12.
A.
Szabo
and
N. S.
Ostlund
,
J. Chem. Phys.
67
,
4351
(
1977
).
13.
A.
Szabo
and
N. S.
Ostlund
,
Int. J. Quantum Chem.
12
,
389
(
1977
).
14.
J. E.
Bates
and
F.
Furche
,
J. Chem. Phys.
139
,
171103
(
2013
).
15.
A. D.
McLachlan
and
M. A.
Ball
,
Rev. Mod. Phys.
36
,
844
(
1964
).
16.
J.
Toulouse
,
I. C.
Gerber
,
G.
Jansen
,
A.
Savin
, and
J. G.
Ángyán
,
Phys. Rev. Lett.
102
,
096404
(
2009
).
17.
J.
Toulouse
,
W.
Zhu
,
J. G.
Ángyán
, and
A.
Savin
,
Phys. Rev. A
82
,
032502
(
2010
).
18.
T. M.
Henderson
and
G. E.
Scuseria
,
Mol. Phys.
108
,
2511
(
2010
).
19.
M.
Fuchs
,
Y.-M.
Niquet
,
X.
Gonze
, and
K.
Burke
,
J. Chem. Phys.
122
,
094116
(
2005
).
20.
J. F.
Dobson
,
J.
Wang
,
B. P.
Dinte
,
K.
McLennan
, and
H. M.
Le
,
Int. J. Quantum Chem.
101
,
579
(
2005
).
21.
J. F.
Dobson
and
T.
Gould
,
J. Phys.: Condens. Matter
24
,
073201
(
2012
).
22.
X.
Ren
,
P.
Rinke
,
G. E.
Scuseria
, and
M.
Scheffler
,
Phys. Rev. B
88
,
035120
(
2013
).
23.
Z.
Yan
,
J. P.
Perdew
, and
S.
Kurth
,
Phys. Rev. B
61
,
16430
(
2000
).
24.
J.
Paier
,
X.
Ren
,
P.
Rinke
,
G. E.
Scuseria
,
A.
Grüneis
,
G.
Kresse
, and
M.
Scheffler
,
New J. Phys.
14
,
043002
(
2012
).
25.
A.
Grüneis
,
M.
Marsman
,
J.
Harl
,
L.
Schimka
, and
G.
Kresse
,
J. Chem. Phys.
131
,
154115
(
2009
).
26.
D. L.
Freeman
,
Phys. Rev. B
15
,
5512
(
1977
).
27.
G.
Jansen
,
R.-F.
Liu
, and
J. G.
Ángyán
,
J. Chem. Phys.
133
,
154106
(
2010
).
28.
A.
Heßelmann
,
Phys. Rev. A
85
,
012517
(
2012
).
29.
W.
Zhu
,
J.
Toulouse
,
A.
Savin
, and
J. G.
Ángyán
,
J. Chem. Phys.
132
,
244108
(
2010
).
30.
B. G.
Janesko
,
T. M.
Henderson
, and
G. E.
Scuseria
,
J. Chem. Phys.
130
,
081105
(
2009
).
31.
B. G.
Janesko
,
T. M.
Henderson
, and
G. E.
Scuseria
,
J. Chem. Phys.
131
,
034110
(
2009
).
32.
R. M.
Irelan
,
T. M.
Henderson
, and
G. E.
Scuseria
,
J. Chem. Phys.
135
,
094105
(
2011
).
33.
B.
Mussard
,
P.
Reinhardt
,
J. G.
Ángyán
, and
J.
Toulouse
,
J. Chem. Phys.
142
,
154123
(
2015
).
34.
J. J.
Shepherd
,
T. M.
Henderson
, and
G. E.
Scuseria
,
Phys. Rev. Lett.
112
,
133002
(
2014
).
35.
J.
Kussmann
and
C.
Ochsenfeld
,
J. Chem. Phys.
138
,
134114
(
2013
).
36.
J.
Kussmann
and
C.
Ochsenfeld
,
J. Chem. Theory Comput.
11
,
918
(
2015
).
37.
38.
P.
Pulay
,
J. Comput. Chem.
3
,
556
(
1982
).
39.
G. E.
Scuseria
,
T. J.
Lee
, and
H. F.
Schaefer
,
Chem. Phys. Lett.
130
,
236
(
1986
).
40.
H.
Eshuis
,
J.
Yarkony
, and
F.
Furche
,
J. Chem. Phys.
132
,
234114
(
2010
).
41.
J. P.
Boyd
,
J. Sci. Comput.
2
,
99
(
1987
).
42.
H. F.
Schurkus
and
C.
Ochsenfeld
,
J. Chem. Phys.
144
,
031101
(
2016
).
43.
A.
Luenser
,
H. F.
Schurkus
, and
C.
Ochsenfeld
,
J. Chem. Theory Comput.
13
,
1647
(
2017
).
44.
M.
Kállay
,
J. Chem. Phys.
142
,
204105
(
2015
).
45.
A.
Heßelmann
,
J. Chem. Phys.
146
,
174110
(
2017
).
46.
J.
Wilhelm
,
P.
Seewald
,
M.
Del Ben
, and
J.
Hutter
,
J. Chem. Theory Comput.
12
,
5851
(
2016
).
47.
M.
Kaltak
,
J.
Klimeš
, and
G.
Kresse
,
J. Chem. Theory Comput.
10
,
2498
(
2014
).
48.
J. E.
Bates
,
P. D.
Mezei
,
G. I.
Csonka
,
J.
Sun
, and
A.
Ruzsinszky
,
J. Chem. Theory Comput.
13
,
100
(
2017
).
49.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
50.
J.
Harl
and
G.
Kresse
,
Phys. Rev. B
77
,
045136
(
2008
).
51.
L.
Goerigk
and
S.
Grimme
,
J. Chem. Theory Comput.
6
,
107
(
2010
).
52.
L.
Goerigk
and
S.
Grimme
,
Phys. Chem. Chem. Phys.
13
,
6670
(
2011
).
53.
J.
Zheng
,
Y.
Zhao
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
5
,
808
(
2009
).
54.
R.
Peverati
and
D. G.
Truhlar
,
Philos. Trans. R. Soc., A
372
,
20120476
(
2014
).
55.
S.
Grimme
and
M.
Steinmetz
,
Phys. Chem. Chem. Phys.
18
,
20926
(
2016
).
56.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
57.
H.
Eshuis
and
F.
Furche
,
J. Chem. Phys.
136
,
084105
(
2012
).
58.
J.
Paier
,
B. G.
Janesko
,
T. M.
Henderson
,
G. E.
Scuseria
,
A.
Grüneis
, and
G.
Kresse
,
J. Chem. Phys.
132
,
094103
(
2010
).
59.
J.
Paier
,
B. G.
Janesko
,
T. M.
Henderson
,
G. E.
Scuseria
,
A.
Grüneis
, and
G.
Kresse
,
J. Chem. Phys.
133
,
179902
(
2010
).
60.
A.
Ruzsinszky
,
I. Y.
Zhang
, and
M.
Scheffler
,
J. Chem. Phys.
143
,
144115
(
2015
).
You do not currently have access to this content.