In this work, we propose new field-free estimators of static field-gradient polarizabilities for finite temperature path-integral Monte Carlo method. Namely, dipole–quadrupole polarizability A, dipole–dipole–quadrupole polarizability B, and quadrupole–quadrupole polarizability C are computed for several up to two-electron systems: H, H, He, Li+, Be2+, Ps2, PsH, H2+, H2, H3+, and HeH+. We provide complementary data for ground state electronic properties within the adiabatic approximation and demonstrate good agreement with available values in the literature. More importantly, we present fully non-adiabatic results from 50 K to 1600 K, which allow us to analyze and discuss strong thermal coupling and rovibrational effects in total field-gradient polarizabilities. These phenomena are most relevant but clearly overlooked, e.g., in the construction of modern polarizable force field models. However, our main purpose is demonstrating the accuracy and simplicity of our approach in a problem that is generally challenging.

1.
A. D.
Buckingham
,
Permanent and Induced Molecular Moments and Long-Range Intermolecular Forces
(
John Wiley & Sons, Inc.
,
2007
), pp.
107
142
.
2.
G.
Maroulis
,
Computational Aspects of Electric Polarizability Calculations: Atoms, Molecules and Clusters
(
IOS Press
,
2006
).
3.
J.
Mitroy
,
M. S.
Safronova
, and
C. W.
Clark
,
J. Phys. B: At., Mol. Opt. Phys.
43
,
202001
(
2010
).
4.
D. M.
Bishop
,
Rev. Mod. Phys.
62
,
343
(
1990
).
5.
J.
Tiihonen
,
I.
Kylänpää
, and
T. T.
Rantala
,
Phys. Rev. A
94
,
032515
(
2016
).
6.
J.
Tiihonen
,
I.
Kylänpää
, and
T. T.
Rantala
,
Phys. Rev. A
91
,
062503
(
2015
).
7.
I.
Leontyev
and
A.
Stuchebrukhov
,
Phys. Chem. Chem. Phys.
13
,
2613
(
2011
).
8.
C. M.
Baker
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
5
,
241
(
2015
).
9.
J.
Tao
and
A. M.
Rappe
,
J. Chem. Phys.
144
,
031102
(
2016
).
10.
D. M.
Ceperley
,
Rev. Mod. Phys.
67
,
279
(
1995
).
11.
I.
Kylänpää
, “
First-principles finite temperature electronic structure of some small molecules
,” Ph.D. thesis,
Tampere University of Technology
,
2011
.
12.
I.
Kylänpää
,
M.
Leino
, and
T. T.
Rantala
,
Phys. Rev. A
76
,
052508
(
2007
).
13.
W. R.
Magro
,
B.
Militzer
,
D. M.
Ceperley
,
B.
Bernu
, and
C.
Pierleoni
, “Restricted Path Integral Monte Carlo Calculations of Hot, Dense Hydrogen,” in (Springer,
2002
), pp.
337
340
.
14.
D. M.
Bishop
and
J.
Pipin
,
Chem. Phys. Lett.
236
,
15
(
1995
).
15.
H.
Nakashima
and
H.
Nakatsuji
,
J. Chem. Phys.
127
,
224104
(
2007
).
16.
D. M.
Bishop
and
M.
Rérat
,
J. Chem. Phys.
91
,
5489
(
1989
).
17.
W. R.
Johnson
and
K. T.
Cheng
,
Phys. Rev. A
53
,
1375
(
1996
).
18.
A. V.
Turbiner
and
H.
Olivares-Pilon
,
J. Phys. B: At., Mol. Opt. Phys.
44
,
101002
(
2011
).
19.
D. R.
Bates
and
G.
Poots
,
Proc. Phys. Soc. A
66
,
784
(
1953
).
20.
D. M.
Bishop
and
L. M.
Cheung
,
J. Phys. B: At., Mol. Opt. Phys.
12
,
3135
(
1979
).
21.
W.
Kolos
and
L.
Wolniewicz
,
J. Chem. Phys.
49
,
404
(
1968
).
22.
J. D.
Poll
and
L.
Wolniewicz
,
J. Chem. Phys.
68
,
3053
(
1978
).
23.
D. M.
Bishop
,
J.
Pipin
, and
S. M.
Cybulski
,
Phys. Rev. A
43
,
4845
(
1991
).
24.
G. D.
Carney
and
R. N.
Porter
,
J. Chem. Phys.
60
,
4251
(
1974
).
25.
A. V.
Turbiner
and
J. C.
Lopez Vieyra
,
J. Phys. Chem. A
117
,
10119
(
2013
).
26.
K.
Pachucki
,
Phys. Rev. A
85
,
042511
(
2012
).
27.
J.
Pipin
and
D. M.
Bishop
,
J. Phys. B: At., Mol. Opt. Phys.
25
,
17
(
1992
).
28.
A. M.
Frolov
and
V. H.
Smith
,
Phys. Rev. A
56
,
2417
(
1997
).
29.
S.
Bubin
,
M.
Stanke
,
D.
Kȩdziera
, and
L.
Adamowicz
,
Phys. Rev. A
75
,
062504
(
2007
).
30.
L.-Y.
Tang
,
Z.-C.
Yan
,
T.-Y.
Shi
, and
J. F.
Babb
,
Phys. Rev. A
90
,
012524
(
2014
).
31.
M.
Stanke
,
D.
Kçedziera
,
S.
Bubin
,
M.
Molski
, and
L.
Adamowicz
,
J. Chem. Phys.
128
,
114313
(
2008
).
32.
I.
Kylänpää
and
T. T.
Rantala
,
J. Chem. Phys.
133
,
044312
(
2010
).
33.
W.-C.
Tung
,
M.
Pavanello
, and
L.
Adamowicz
,
J. Chem. Phys.
137
,
164305
(
2012
).
34.
D. M.
Bishop
and
B.
Lam
,
Chem. Phys. Lett.
143
,
515
(
1988
).

Supplementary Material

You do not currently have access to this content.