We report the three main ingredients to calculate three- and four-electron integrals over Gaussian basis functions involving Gaussian geminal operators: fundamental integrals, upper bounds, and recurrence relations. In particular, we consider the three- and four-electron integrals that may arise in explicitly correlated F12 methods. A straightforward method to obtain the fundamental integrals is given. We derive vertical, transfer, and horizontal recurrence relations to build up angular momentum over the centers. Strong, simple, and scaling-consistent upper bounds are also reported. This latest ingredient allows us to compute only the O(N2) significant three- and four-electron integrals, avoiding the computation of the very large number of negligible integrals.

1.
T.
Kato
,
Trans. Am. Math. Soc.
70
,
195
(
1951
).
2.
T.
Kato
,
Commun. Pure Appl. Math.
10
,
151
(
1957
).
3.
R. T.
Pack
and
W.
Byers Brown
,
J. Chem. Phys.
45
,
556
(
1966
).
4.
J. D.
Morgan
 III
and
W.
Kutzelnigg
,
J. Phys. Chem.
97
,
2425
(
1993
).
5.
C. R.
Myers
,
C. J.
Umrigar
,
J. P.
Sethna
, and
J. D.
Morgan
 III
,
Phys. Rev. A
44
,
5537
(
1991
).
6.
D. P.
Tew
,
J. Chem. Phys.
129
,
014104
(
2008
).
7.
P. F.
Loos
and
P. M. W.
Gill
,
Phys. Rev. Lett.
103
,
123008
(
2009
).
8.
P. F.
Loos
and
P. M. W.
Gill
,
Mol. Phys.
108
,
2527
(
2010
).
9.
P. F.
Loos
and
P. M. W.
Gill
,
Phys. Rev. Lett.
108
,
083002
(
2012
).
10.
Y. I.
Kurokawa
,
H.
Nakashima
, and
H.
Nakatsuji
,
J. Chem. Phys.
139
,
044114
(
2013
).
11.
Y. I.
Kurokawa
,
H.
Nakashima
, and
H.
Nakatsuji
,
J. Chem. Phys.
140
,
214103
(
2014
).
12.
A.
Gruneis
,
S.
Hirata
,
Y.-Y.
Ohnishi
, and
S.
Ten-no
,
J. Chem. Phys.
146
,
080901
(
2017
).
13.
W.
Kutzelnigg
,
Theor. Chim. Acta
68
,
445
(
1985
).
14.
C.
Hattig
,
W.
Klopper
,
A.
Kohn
, and
D. P.
Tew
,
Chem. Rev.
112
,
4
(
2012
).
15.
L.
Kong
,
F. A.
Bischo
, and
E. F.
Valeev
,
Chem. Rev.
112
,
75
(
2012
).
16.
E. A.
Hylleraas
,
Z. Phys.
48
,
469
(
1928
).
17.
E. A.
Hylleraas
,
Z. Phys.
54
,
347
(
1929
).
18.
J. C.
Slater
,
Phys. Rev.
31
,
333
(
1928
).
19.

Note that, although Slater was the first to propose such a correlation factor, he suggested to set λ12=1/2 in order to ensure that the wave function fulfills Kato’s electron-electron cusp condition. However, Hartree and Ingman84 found this correlation factor physically unreasonable due to its behavior at large r12 and suggested that a correlation factor of the form 1cexp(λ12r12) (with λ12>0) would be more appropriate. We refer the interested reader to the review of Hattig et al.14 for a detailed historical overview.

20.
S. F.
Boys
,
Proc. R. Soc. A
258
,
402
(
1960
).
21.
K.
Singer
,
Proc. R. Soc. A
258
,
412
(
1960
).
22.
J.
Rychlewski
and
J.
Komasa
, in
Explicitly Correlated Functions in Chemistry and Physics
, edited by
J.
Rychlewski
(
Kluwer Academic Publishers
,
Dordrecht
,
2003
), p.
91
.
23.
S.
Bubin
,
M.
Cafiero
, and
L.
Adamowicz
,
Adv. Chem. Phys.
131
,
377
(
2005
).
24.
S.
Bubin
,
M.
Stanke
, and
L.
Adamowicz
,
J. Chem. Phys.
131
,
044128
(
2009
).
25.
K.
Szalewicz
and
B.
Jeziorski
,
Mol. Phys.
108
,
3091
(
2010
).
26.
K. C.
Pan
and
H. F.
King
,
J. Chem. Phys.
53
,
4397
(
1970
).
27.
K. C.
Pan
and
H. F.
King
,
J. Chem. Phys.
56
,
4667
(
1972
).
28.
L.
Adamowicz
and
A. J.
Sadlej
,
J. Chem. Phys.
67
,
4298
(
1977
).
29.
L.
Adamowicz
and
A. J.
Sadlej
,
Chem. Phys. Lett.
48
,
305
(
1977
).
30.
L.
Adamowicz
and
A. J.
Sadlej
,
J. Chem. Phys.
69
,
3992
(
1978
).
31.
K.
Szalewicz
,
B.
Jeziorski
,
H.
Monkhorst
, and
G.
Zabolitzky
,
Chem. Phys. Lett.
91
,
169
(
1982
).
32.
K.
Szalewicz
,
B.
Jeziorski
,
H.
Monkhorst
, and
G.
Zabolitzky
,
J. Chem. Phys.
78
,
1420
(
1983
).
33.
W.
Klopper
and
W.
Kutzelnigg
,
Chem. Phys. Lett.
134
,
17
(
1987
).
34.
A.
Preiskorn
and
B.
Zurawski
,
Int. J. Quantum Chem.
27
,
641
(
1985
).
35.
E.
Clementi
,
Modern Techniques in Computational Chemistry: MOTECC-89
(
ESCOM Science Publishers B. V.
,
New York
,
1989
).
36.
W.
Kutzelnigg
and
W.
Klopper
,
J. Chem. Phys.
94
,
1985
(
1991
).
37.
H. J.
Werner
,
T. B.
Adler
, and
F. R.
Manby
,
J. Chem. Phys.
126
,
164102
(
2007
).
38.
R. A.
Banchorz
,
F. A.
Bischoff
,
A.
Glöß
,
C.
Hättig
,
S.
Höfener
,
W.
Klopper
, and
D. P.
Tew
,
J. Comput. Chem.
32
,
2492
(
2011
).
39.
B. J.
Persson
and
P. R.
Taylor
,
J. Chem. Phys.
105
,
5915
(
1996
).
40.
D. P.
Tew
and
W.
Klopper
,
J. Chem. Phys.
123
,
074101
(
2005
).
41.
D. P.
Tew
and
W.
Klopper
,
J. Chem. Phys.
125
,
094302
(
2006
).
42.
S.
Ten-no
,
Chem. Phys. Lett.
398
,
56
(
2004
).
43.
S.
Ten-no
,
J. Chem. Phys.
126
,
014108
(
2007
).
44.
A. J.
May
and
F. R.
Manby
,
J. Chem. Phys.
121
,
4479
(
2004
).
45.
A. J.
May
,
E. F.
Valeev
,
R.
Polly
, and
F. R.
Manby
,
Phys. Chem. Chem. Phys.
7
,
2710
(
2005
).
46.
B. J.
Persson
and
P. R.
Taylor
,
Theor. Chem. Acc.
97
,
240
(
1997
).
47.
L. E.
McMurchie
and
E. R.
Davidson
,
J. Comput. Phys.
26
,
218
(
1978
).
48.
P.
Dahle
, “
Accurate calculations using explicitly correlated wave functions
,” Ph.D. thesis,
University of Oslo
,
2004
.
49.
P.
Dahle
,
T.
Helgaker
,
D.
Jonsson
, and
P. R.
Taylor
,
Phys. Chem. Chem. Phys.
9
,
3112
(
2007
).
50.
P.
Dahle
,
T.
Helgaker
,
D.
Jonsson
, and
P. R.
Taylor
,
Phys. Chem. Chem. Phys.
10
,
3377
(
2008
).
51.
S. L.
Saito
and
Y.-I.
Suzuki
,
J. Chem. Phys.
114
,
1115
(
2001
).
52.
S.
Obara
and
A.
Saika
,
J. Chem. Phys.
84
,
3963
(
1986
).
53.
S.
Obara
and
A.
Saika
,
J. Chem. Phys.
89
,
1540
(
1988
).
54.
H. F.
King
and
M.
Dupuis
,
J. Comput. Phys.
21
,
144
(
1976
).
55.
M.
Dupuis
,
J.
Rys
, and
H. F.
King
,
J. Chem. Phys.
65
,
111
(
1976
).
56.
J.
Rys
,
M.
Dupuis
, and
H. F.
King
,
J. Comput. Chem.
4
,
154
(
1983
).
57.
A.
Komornicki
and
H. F.
King
,
J. Chem. Phys.
134
,
244115
(
2011
).
58.
A. J.
May
, “
Density fitting in explicitly correlated electronic structure theory
,” Ph.D. thesis,
University of Bristol
,
2006
.
59.
J. C.
Womack
, “
Evaluating many-electron molecular integrals for quantum chemistry
,” Ph.D. thesis,
University of Bristol
,
2015
.
60.
G. M. J.
Barca
,
P. F.
Loos
, and
P. M. W.
Gill
,
J. Chem. Theory Comput.
12
,
1735
(
2016
).
61.
G. M. J.
Barca
and
P. F.
Loos
, “
Reccurence relations for four-electron integrals over Gaussian basis functions
,”
Adv. Quantum Chem.
(published online), e-print arXiv:1703.00846 [physics.chem-ph].
62.

Komornicki and King mentioned the crucial importance of an effective integral screening in Ref. 57.

63.
G. M. J.
Barca
,
P. F.
Loos
, and
P. M. W.
Gill
(unpublished).
64.
M.
Head-Gordon
and
J. A.
Pople
,
J. Chem. Phys.
89
,
5777
(
1988
).
65.
P. M. W.
Gill
,
Adv. Quantum Chem.
25
,
141
(
1994
).
66.
W.
Klopper
and
R.
Rohse
,
Theor. Chem. Acc.
83
,
441
(
1992
).
67.
W.
Klopper
and
C. C. M.
Samson
,
J. Chem. Phys.
116
,
6397
(
2002
).
68.
F. R.
Manby
,
J. Chem. Phys.
119
,
4607
(
2003
).
69.
H. J.
Werner
,
F. R.
Manby
, and
P. J.
Knowles
,
J. Chem. Phys.
118
,
8149
(
2003
).
70.
W.
Klopper
,
J. Chem. Phys.
120
,
10890
(
2004
).
71.
S.
Ten-no
,
J. Chem. Phys.
121
,
117
(
2004
).
72.
F. R.
Manby
,
H. J.
Werner
,
T. B.
Adler
, and
A. J.
May
,
J. Chem. Phys.
124
,
094103
(
2006
).
73.
S.
Ten-no
and
J.
Noga
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
114
(
2012
).
74.
S.
Ten-no
,
Theor. Chem. Acc.
131
,
1070
(
2012
).
75.
S.
Reine
,
T.
Helgaker
, and
R.
Lind
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
290
(
2012
).
76.
G. M. J.
Barca
and
P. M. W.
Gill
,
J. Chem. Theory Comput.
12
,
4915
(
2016
).
77.
P. M. W.
Gill
,
B. G.
Johnson
, and
J. A.
Pople
,
Int. J. Quantum Chem.
40
,
745
(
1991
).
79.
A. K. H.
Weiss
and
C.
Ochsenfeld
,
J. Comput. Chem.
36
,
1390
(
2015
).
80.
P. M. W.
Gill
,
B. G.
Johnson
, and
J. A.
Pople
,
Chem. Phys. Lett.
217
,
65
(
1994
).
81.
NIST Handbook of Mathematical Functions
, edited by
F. W. J.
Olver
,
D. W.
Lozier
,
R. F.
Boisvert
, and
C. W.
Clark
(
Cambridge University Press
,
New York
,
2010
).
82.
P. M. W.
Gill
and
J. A.
Pople
,
Int. J. Quantum Chem.
40
,
753
(
1991
).
83.
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
8
,
3072
(
2006
).
84.
D. R.
Hartree
and
A. L.
Ingman
,
Mem. Proc. Manchester Lit. Philos. Soc.
77
,
69
(
1933
).
You do not currently have access to this content.