Water confined to nanoscale widths in two dimensions between ideal planar walls has been the subject of ample study, aiming at understanding the intrinsic response of water to confinement, avoiding the consideration of the chemistry of actual confining materials. In this work, we study the response of such nanoconfined water to the imposition of a periodicity in the confinement by means of computer simulations, both using empirical potentials and from first-principles. For that we propose a periodic confining potential emulating the atomistic oscillation of the confining walls, which allows varying the lattice parameter and amplitude of the oscillation. We do it for a triangular lattice, with several values of the lattice parameter: one which is ideal for commensuration with layers of Ih ice and other values that would correspond to more realistic substrates. For the former, the phase diagram shows an overall rise of the melting temperature. The liquid maintains a bi-layer triangular structure, however, despite the fact that it is not favoured by the external periodicity. The first-principles liquid is significantly affected by the modulation in its layering and stacking even at relatively small amplitudes of the confinement modulation. Beyond some critical modulation amplitude, the hexatic phase present in flat confinement is replaced by a trilayer crystalline phase unlike any of the phases encountered for flat confinement. For more realistic lattice parameters, the liquid does not display higher tendency to freeze, but it clearly shows inhomogeneous behaviour as the strength of the rugosity increases. In spite of this expected inhomogeneity, the structural and dynamical response of the liquid is surprisingly insensitive to the external modulation. Although the first-principles calculations give a more triangular liquid than the one observed with empirical potentials (TIP4P/2005), both agree remarkably well for the main conclusions of the study.

1.
P.
Ball
,
H2O: A Biography of Water
(
Hachette
,
UK
,
2015
).
2.
O.
Mishima
and
H. E.
Stanley
,
Nature
396
,
329
(
1998
).
3.
C. E.
Bertrand
,
Y.
Zhang
, and
S.-H.
Chen
,
Phys. Chem. Chem. Phys.
15
,
721
(
2013
).
4.
T.
Kaneko
,
J.
Bai
,
K.
Yasuoka
,
A.
Mitsutake
, and
X. C.
Zeng
,
J. Chem. Phys.
140
,
184507
(
2014
).
5.
J.
Chen
,
G.
Schusteritsch
,
C. J.
Pickard
,
C. G.
Salzmann
, and
A.
Michaelides
,
Phys. Rev. Lett.
116
,
025501
(
2016
).
6.
F.
Corsetti
,
J.
Zubeltzu
, and
E.
Artacho
,
Phys. Rev. Lett.
116
,
085901
(
2016
).
7.
J.
Bai
and
X. C.
Zeng
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
21240
(
2012
).
8.
J.
Bai
,
X.
Zeng
,
K.
Koga
, and
H.
Tanaka
,
Mol. Simul.
29
,
619
(
2003
).
9.
K.
Koga
,
X. C.
Zeng
, and
H.
Tanaka
,
Phys. Rev. Lett.
79
,
5262
(
1997
).
10.
J.
Zubeltzu
,
F.
Corsetti
,
M.
Fernández-Serra
, and
E.
Artacho
,
Phys. Rev. E
93
,
062137
(
2016
).
11.
F.
Corsetti
,
P.
Matthews
, and
E.
Artacho
,
Sci. Rep.
6
,
18651
(
2016
).
12.
R.
Zangi
and
A. E.
Mark
,
Phys. Rev. Lett.
91
,
025502
(
2003
).
13.
W.-H.
Zhao
,
J.
Bai
,
L.-F.
Yuan
,
J.
Yang
, and
X. C.
Zeng
,
Chem. Sci.
5
,
1757
(
2014
).
14.
Y.
Zhu
,
F.
Wang
,
J.
Bai
,
X. C.
Zeng
, and
H.
Wu
,
ACS Nano
9
,
12197
(
2015
).
15.
N.
Giovambattista
,
P. J.
Rossky
, and
P. G.
Debenedetti
,
Phys. Rev. Lett.
102
,
050603
(
2009
).
16.
R.
Zangi
,
J. Phys.: Condens. Matter
16
,
S5371
(
2004
).
17.
J.
Chen
,
G.
Schusteritsch
,
C. J.
Pickard
,
C. G.
Salzmann
, and
A.
Michaelides
,
Phys. Rev. B
95
,
094121
(
2017
).
18.
S.
Han
,
M.
Choi
,
P.
Kumar
, and
H. E.
Stanley
,
Nat. Phys.
6
,
685
(
2010
).
19.
I.
Brovchenko
and
A.
Oleinikova
,
ChemPhysChem
9
,
2660
(
2008
).
21.
M. W.
Mahoney
and
W. L.
Jorgensen
,
J. Chem. Phys.
112
,
8910
(
2000
).
22.
J. L.
Abascal
and
C.
Vega
,
J. Chem. Phys.
123
,
234505
(
2005
).
23.
J. M.
Kosterlitz
and
D. J.
Thouless
,
J. Phys. C: Solid State Phys.
6
,
1181
(
1973
).
24.
25.
B.
Halperin
and
D. R.
Nelson
,
Phys. Rev. Lett.
41
,
121
(
1978
).
26.
D. R.
Nelson
and
B.
Halperin
,
Phys. Rev. B
19
,
2457
(
1979
).
27.
N.
Giovambattista
,
P.
Rossky
, and
P.
Debenedetti
,
Annu. Rev. Phys. Chem.
63
,
179
(
2012
).
28.
M.
Fitzner
,
G. C.
Sosso
,
S. J.
Cox
, and
A.
Michaelides
,
J. Am. Chem. Soc.
137
,
13658
(
2015
).
29.
Y. S.
Al-Hamdani
,
D.
Alfè
, and
A.
Michaelides
,
J. Chem. Phys.
146
,
094701
(
2017
).
30.
A.
Kiselev
,
F.
Bachmann
,
P.
Pedevilla
,
S. J.
Cox
,
A.
Michaelides
,
D.
Gerthsen
, and
T.
Leisner
,
Science
355
,
367
(
2017
).
31.
G. C.
Sosso
,
G. A.
Tribello
,
A.
Zen
,
P.
Pedevilla
, and
A.
Michaelides
,
J. Chem. Phys.
145
,
211927
(
2016
).
32.
G.
Reddy
,
J. E.
Straub
, and
D.
Thirumalai
,
Proc. Natl. Acad. Sci. U. S. A.
107
,
21459
(
2010
).
33.
E.
Khurana
,
S. O.
Nielsen
,
B.
Ensing
,
M. L.
Klein
 et al,
J. Phys. Chem. B
110
,
18965
(
2006
).
34.
Y.-K.
Cheng
and
P. J.
Rossky
,
Nature
392
,
696
(
1998
).
35.
J.
Mittal
and
G.
Hummer
,
Faraday Discuss.
146
,
341
(
2010
).
36.
F.
Leoni
and
G.
Franzese
,
Phys. Rev. E
94
,
062604
(
2016
).
37.
F.
Leoni
and
G.
Franzese
,
J. Chem. Phys.
141
,
174501
(
2014
).
38.
S. J.
Cox
,
S. M.
Kathmann
,
B.
Slater
, and
A.
Michaelides
,
J. Chem. Phys.
142
,
184705
(
2015
).
39.
S. J.
Cox
,
S. M.
Kathmann
,
B.
Slater
, and
A.
Michaelides
,
J. Chem. Phys.
142
,
184704
(
2015
).
40.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
41.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer Simulation Using Particles
(
CRC Press
,
1988
).
42.
J.-P.
Ryckaert
,
G.
Ciccotti
, and
H. J.
Berendsen
,
J. Comput. Phys.
23
,
327
(
1977
).
43.
J. M.
Soler
,
E.
Artacho
,
J. D.
Gale
,
A.
García
,
J.
Junquera
,
P.
Ordejón
, and
D.
Sánchez-Portal
,
J. Phys.: Condens. Matter
14
,
2745
(
2002
).
44.
M.
Dion
,
H.
Rydberg
,
E.
Schröder
,
D. C.
Langreth
, and
B. I.
Lundqvist
,
Phys. Rev. Lett.
92
,
246401
(
2004
).
45.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
46.
J.
Wang
,
G.
Román-Pérez
,
J. M.
Soler
,
E.
Artacho
, and
M.-V.
Fernández-Serra
,
J. Chem. Phys.
134
,
024516
(
2011
).
47.
F.
Corsetti
,
E.
Artacho
,
J. M.
Soler
,
S. S.
Alexandre
, and
M.-V.
Fernández-Serra
,
J. Chem. Phys.
139
,
194502
(
2013
).
48.
C.-Y.
Lee
,
J. A.
McCammon
, and
P.
Rossky
,
J. Chem. Phys.
80
,
4448
(
1984
).
49.
N.
Giovambattista
,
P. J.
Rossky
, and
P. G.
Debenedetti
,
Phys. Rev. E
73
,
041604
(
2006
).
50.
P.
Kumar
,
S. V.
Buldyrev
,
F. W.
Starr
,
N.
Giovambattista
, and
H. E.
Stanley
,
Phys. Rev. E
72
,
051503
(
2005
).
51.
H. H.
von Grünberg
,
P.
Keim
, and
G.
Maret
,
Phase Transitions in Two-Dimensional Colloidal Systems
(
Wiley-VCH
,
Weinheim
,
2007
).
52.
O.
Vilanova
and
G.
Franzese
, preprint arXiv:1102.2864 (
2011
).
You do not currently have access to this content.