Low energy electron attachment to mixed (H2)x/(O2)y clusters and their deuterated analogs has been investigated for the first time. These experiments were carried out using liquid helium nanodroplets to form the clusters, and the effect of the added electron was then monitored via mass spectrometry. There are some important differences between electron attachment to the pure clusters and to the mixed clusters. A particularly notable feature is the formation of HO2 and H2O ions from an electron-induced chemical reaction between the two dopants. The chemistry leading to these anions appears to be driven by electron resonances associated with H2 rather than O2. The electron resonances for H2 can lead to dissociative electron attachment (DEA), just as for the free H2 molecule. However, there is evidence that the resonance in H2 can also lead to rapid electron transfer to O2, which then induces DEA of the O2. This kind of excitation transfer has not, as far as we are aware, been reported previously.

1.
E.
Illenberger
and
J.
Momigny
,
Gaseous Molecular Ions
(
Steinkopff-Verlag
,
Heidelberg
,
1992
).
2.
L. G.
Christophorou
and
J. K.
Olthoff
,
Fundamental Electron Interactions with Plasma Processing Gases
(
Kluwer Academic/Plenum
,
New York
,
2004
).
3.
S.-R.
Huh
,
N.-K.
Kim
,
B.-K.
Jung
,
K.-J.
Chung
,
Y.-S.
Hwang
, and
G.-H.
Kim
,
Phys. Plasmas
22
,
033506
(
2015
).
4.
S.
Lepp
,
P. C.
Stancil
, and
A.
Dalgarno
,
J. Phys. B: At., Mol. Opt. Phys.
35
,
R57
(
2002
).
5.
V.
Vuitton
,
P.
Lavvas
,
R. V.
Yelle
,
M.
Galand
,
A.
Wellbrock
,
G. R.
Lewis
,
A. J.
Coates
, and
J.-E.
Wahlund
,
Planetary Space Sci.
57
,
1558
(
2009
).
6.
G. J.
Schulz
,
Phys. Rev.
113
,
816
(
1959
).
7.
D.
Rapp
,
T. E.
Sharp
, and
D. D.
Briglia
,
Phys. Rev. Lett.
14
,
533
(
1965
).
8.
G. J.
Schulz
and
R. K.
Asundi
,
Phys. Rev. Lett.
15
,
946
(
1965
).
9.
D.
Spence
and
G. J.
Schulz
,
J. Chem. Phys.
54
,
5424
(
1971
).
10.
M.
Tronc
,
F.
Fiquet-Fayard
,
C.
Schermann
, and
R. I.
Hall
,
J. Phys. B: At., Mol. Opt. Phys.
10
,
305
(
1977
).
11.
M.
Allan
and
S. F.
Wong
,
Phys. Rev. Lett.
41
,
1791
(
1978
).
12.
M.
Tronc
,
F.
Fiquet-Fayard
,
C.
Schermann
, and
H. S.
Taylor
,
J. Phys. B: At., Mol. Opt. Phys.
12
,
L279
(
1979
).
13.
I.
Čadež
,
R. I.
Hall
,
M.
Landau
,
F.
Pichou
, and
C.
Schermann
,
J. Phys. B: At., Mol. Opt. Phys.
21
,
3271
(
1988
).
14.
H.
Drexel
,
G.
Senn
,
T.
Fiegele
,
P.
Scheier
,
A.
Stamatovic
,
N. J.
Mason
, and
T. D.
Märk
,
J. Phys. B: At., Mol. Opt. Phys.
34
,
1415
(
2001
).
15.
E.
Krishnakumar
,
S.
Denifl
,
I.
Čadež
,
S.
Markelj
, and
N. J.
Mason
,
Phys. Rev. Lett.
106
,
243201
(
2011
).
16.
J. C. Y.
Chen
and
J. L.
Peacher
,
Phys. Rev.
163
,
103
(
1967
).
17.
J. M.
Wadehra
and
J. N.
Bardsley
,
Phys. Rev. Lett.
41
,
1795
(
1978
).
18.
D. T.
Stibbe
and
J.
Tennyson
,
J. Phys. B: At., Mol. Opt. Phys.
31
,
815
(
1998
).
19.
I. I.
Fabrikant
,
J. M.
Wadehra
, and
Y.
Xu
,
Phys. Scr.
T96
,
45
(
2002
).
20.
J.
Horáček
,
M.
Čížek
,
K.
Houfek
,
P.
Kolorenč
, and
W.
Domcke
,
Phys. Rev. A
70
,
052712
(
2004
).
21.
D.
Rabli
and
M. A.
Morrison
,
Phys. Rev. Lett.
97
,
013201
(
2006
).
22.
R.
Celiberto
,
R. K.
Janev
,
J. M.
Wadehra
, and
A.
Laricchiuta
,
Phys. Rev. A
80
,
012712
(
2009
).
23.
R.
Celiberto
,
R. K.
Janev
,
J. M.
Wadehra
, and
J.
Tennyson
,
Chem. Phys.
398
,
206
(
2012
).
24.
G. J.
Schulz
,
Phys. Rev.
128
,
178
(
1962
).
25.
D.
Rapp
and
D. D.
Briglia
,
J. Chem. Phys.
43
,
1480
(
1965
).
26.
L. G.
Christophorou
,
R. N.
Compton
,
G. S.
Hurst
, and
P. W.
Reinhardt
,
J. Chem. Phys.
43
,
4273
(
1965
).
27.
D.
Spence
and
G. J.
Schulz
,
Phys. Rev. A
5
,
724
(
1972
).
28.
D. L.
McCorkle
,
L. G.
Christophorou
, and
V. E.
Anderson
,
J. Phys. B: At., Mol. Opt. Phys.
5
,
1211
(
1972
).
29.
T. D.
Märk
,
K.
Leiter
,
W.
Ritter
, and
A.
Stamatovic
,
Phys. Rev. Lett.
55
,
2559
(
1985
).
30.
V.
Laporta
,
R.
Celiberto
, and
J.
Tennyson
,
Phys. Rev. A
91
,
012701
(
2015
).
31.
M.
Renzler
,
M.
Kuhn
,
A.
Mauracher
,
A.
Lindinger
,
P.
Scheier
, and
A. M.
Ellis
,
Phys. Rev. Lett.
117
,
273001
(
2016
).
32.
L. F.
Gomez
,
E.
Loginov
,
R.
Sliter
, and
A.
Vilesov
,
J. Chem. Phys.
135
,
154201
(
2011
).
33.
S.
Ralser
,
J.
Postler
,
M.
Harnisch
,
A. M.
Ellis
, and
P.
Scheier
,
Int. J. Mass Spectrom.
379
,
194
(
2015
).
34.
U.
Henne
and
J. P.
Toennies
,
J. Chem. Phys.
108
,
9327
(
1998
).
35.
D. B.
Dunkin
,
F. C.
Fehsenfeld
, and
E. E.
Ferguson
,
J. Chem. Phys.
53
,
987
(
1970
).
36.
O.
Ingolfsson
,
F.
Weik
, and
E.
Illenberger
,
Int. J. Mass Spectrom. Ion Process.
55
,
1
(
1996
).
37.
F.
Weik
,
E.
Illenberger
,
K.
Nagesha
, and
L.
Sanche
,
J. Phys. Chem. B
102
,
824
(
1998
).
38.
M.
McFarland
,
D. L.
Albritton
,
F. C.
Fehsenfeld
,
E. E.
Ferguson
, and
A. L.
Schmeltekopf
,
J. Chem. Phys.
59
,
6629
(
1973
).
39.
A. A.
Viggiano
,
R. A.
Morris
,
C. A.
Deakyne
,
F.
Dale
, and
J. F.
Paulson
,
J. Phys. Chem.
95
,
3644
(
1991
).
40.
J. V.
Coe
,
G. H.
Lee
,
J. G.
Eaton
,
S. T.
Arnold
,
H. W.
Sarkas
,
K. H.
Bowen
,
C.
Ludewigt
,
H.
Haberland
, and
D. R.
Worsnop
,
J. Chem. Phys.
92
,
3980
(
1990
).
41.
M.
Foltin
,
V.
Grill
, and
T. D.
Märk
,
Chem. Phys. Lett.
188
,
427
(
1992
).

Supplementary Material

You do not currently have access to this content.