DFT/MRCI is a well-established method of Grimme and Waletzke [J. Chem. Phys. 111, 5645 (1999)] combining density functional theory and multireference configuration interaction. It was later redesigned by Lyskov, Kleinschmidt, and Marian [J. Chem. Phys. 144, 034104 (2016)] to provide a better treatment of bi-chromophores while treating all other systems as well as Grimme’s version did by computing individual energy shifts for each state function of a configuration. But all previous operators lack the ability to compute states with an odd number of electrons (doublet and quartet states). Here we present a general Hamiltonian based on Lyskov’s redesign which calculates excited singlet, doublet, triplet, and quartet states of systems that have up to one open shell in the parent determinant. The multiplicity-independent correction parameters provide an extra correction for the open shell in the parent determinant. The Hamiltonian in combination with two parameter sets for different selection thresholds has been tested and compared to experimental vertical excitation and ionization energies yielding similar statistics for all multiplicities with a root mean square deviation smaller than 0.2 eV while maintaining the good computational performance of the Hamiltonians of Grimme and Lyskov.

1.
K.
Sharkas
,
A.
Savin
,
H. J. A.
Jensen
, and
J.
Toulouse
,
J. Chem. Phys.
137
,
044104
(
2012
).
2.
S.
Grimme
,
Chem. Phys. Lett.
259
,
128
(
1996
).
3.
S.
Grimme
and
M.
Waletzke
,
J. Chem. Phys.
111
,
5645
(
1999
).
4.
E. V.
Beck
,
E. A.
Stahlberg
,
L. W.
Burggraf
, and
J.-P.
Blaudeau
,
Chem. Phys.
349
,
158
(
2008
).
5.
M.
Roemelt
,
D.
Maganas
,
S.
DeBeer
, and
F.
Neese
,
J. Chem. Phys.
138
,
204101
(
2013
).
6.
M. R.
Silva-Junior
,
M.
Schreiber
,
S. P.
Sauer
, and
W.
Thiel
,
J. Chem. Phys.
129
,
104103
(
2008
).
7.
C. M.
Marian
and
N.
Gilka
,
J. Chem. Theory Comput.
4
,
1501
(
2008
).
8.
M.
Kleinschmidt
,
C. M.
Marian
,
M.
Waletzke
, and
S.
Grimme
,
J. Chem. Phys.
130
,
044708
(
2009
).
9.
I.
Lyskov
,
M.
Kleinschmidt
, and
C. M.
Marian
,
J. Chem. Phys.
144
,
034104
(
2016
).
10.
J.-M.
Mewes
,
V.
Jovanović
,
C. M.
Marian
, and
A.
Dreuw
,
Phys. Chem. Chem. Phys.
16
,
12393
(
2014
).
11.
J. D.
Spiegel
,
I.
Lyskov
,
M.
Kleinschmidt
, and
C. M.
Marian
,
Chem. Phys.
482
,
265
(
2017
).
12.
N.
Elfers
,
I.
Lyskov
,
J. D.
Spiegel
, and
C. M.
Marian
,
J. Phys. Chem. C
120
,
13901
(
2016
).
13.
J.
Föller
,
M.
Kleinschmidt
, and
C. M.
Marian
,
Inorg. Chem.
55
,
7508
(
2016
).
14.
C. M.
Marian
,
J. Phys. Chem. C
120
,
3715
(
2016
).
15.
A.
Heil
,
K.
Gollnisch
,
M.
Kleinschmidt
, and
C. M.
Marian
,
Mol. Phys.
114
,
407
(
2016
).
16.
H.
Yersin
, “
Triplet emitters for oled applications. mechanisms of exciton trapping and control of emission properties
,” in
Transition Metal and Rare Earth Compounds: Excited States, Transitions, Interactions III
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2004
), pp.
1
26
.
17.
M. J.
Leitl
,
D. M.
Zink
,
A.
Schinabeck
,
T.
Baumann
,
D.
Volz
, and
H.
Yersin
,
Top. Curr. Chem.
374
,
25
(
2016
).
18.
R.
Czerwieniec
,
M. J.
Leitl
,
H. H.
Homeier
, and
H.
Yersin
,
Coord. Chem. Rev.
325
,
2
(
2016
).
19.
Q.
Peng
,
A.
Obolda
,
M.
Zhang
, and
F.
Li
,
Angew. Chem., Int. Ed.
54
,
7091
(
2015
).
20.
M. A.
Baldo
,
D.
O’brien
,
Y.
You
,
A.
Shoustikov
 et al,
Nature
395
,
151
(
1998
).
21.
I.
Ratera
and
J.
Veciana
,
Chem. Soc. Rev.
41
,
303
(
2012
).
22.
Y.
Hattori
,
T.
Kusamoto
, and
H.
Nishihara
,
Angew. Chem., Int. Ed.
53
,
11845
(
2014
).
23.
G. N.
Lewis
,
D.
Lipkin
, and
T. T.
Magel
,
J. Am. Chem. Soc.
66
,
1579
(
1944
).
24.
Z.
Li
and
W.
Liu
,
J. Chem. Theory Comput.
12
,
238
(
2015
).
25.
Z.
Li
and
W.
Liu
,
J. Chem. Theory Comput.
12
,
2517
(
2016
).
26.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
27.
W. D.
Edwards
and
M. C.
Zerner
,
Theor. Chim. Acta
72
,
347
(
1987
).
28.
M.
Filatov
and
S.
Shaik
,
Chem. Phys. Lett.
288
,
689
(
1998
).
29.
R. W.
Wetmore
and
G. A.
Segal
,
Chem. Phys. Lett.
36
,
478
(
1975
).
30.
G. A.
Segal
,
R. W.
Wetmore
, and
K.
Wolf
,
Chem. Phys.
30
,
269
(
1978
).
31.
O.
Treutler
and
R.
Ahlrichs
,
J. Chem. Phys.
102
,
346
(
1995
).
32.
“TURBOMOLE V6.5 2013, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.” (as of 2017).
33.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
34.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
35.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
,
J. Comput. Chem.
32
,
1456
(
2011
).
36.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
37.
A.
Schäfer
,
C.
Huber
, and
R.
Ahlrichs
,
J. Chem. Phys.
100
,
5829
(
1994
).
38.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
,
J. Chem. Phys.
116
,
3175
(
2002
).
39.
“TURBOMOLE V7.1 2016, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.” (as of 2017).
40.
K.
Aidas
,
C.
Angeli
,
K. L.
Bak
,
V.
Bakken
,
R.
Bast
,
L.
Boman
,
O.
Christiansen
,
R.
Cimiraglia
,
S.
Coriani
,
P.
Dahle
,
E. K.
Dalskov
,
U.
Ekström
,
T.
Enevoldsen
,
J. J.
Eriksen
,
P.
Ettenhuber
,
B.
Fernández
,
L.
Ferrighi
,
H.
Fliegl
,
L.
Frediani
,
K.
Hald
,
A.
Halkier
,
C.
Hättig
,
H.
Heiberg
,
T.
Helgaker
,
A. C.
Hennum
,
H.
Hettema
,
E.
Hjertenæs
,
S.
Høst
,
I.-M.
Høyvik
,
M. F.
Iozzi
,
B.
Jansík
,
H. J. Aa.
Jensen
,
D.
Jonsson
,
P.
Jørgensen
,
J.
Kauczor
,
S.
Kirpekar
,
T.
Kjærgaard
,
W.
Klopper
,
S.
Knecht
,
R.
Kobayashi
,
H.
Koch
,
J.
Kongsted
,
A.
Krapp
,
K.
Kristensen
,
A.
Ligabue
,
O. B.
Lutnæs
,
J. I.
Melo
,
K. V.
Mikkelsen
,
R. H.
Myhre
,
C.
Neiss
,
C. B.
Nielsen
,
P.
Norman
,
J.
Olsen
,
J. M. H.
Olsen
,
A.
Osted
,
M. J.
Packer
,
F.
Pawlowski
,
T. B.
Pedersen
,
P. F.
Provasi
,
S.
Reine
,
Z.
Rinkevicius
,
T. A.
Ruden
,
K.
Ruud
,
V. V.
Rybkin
,
P.
Sałek
,
C. C. M.
Samson
,
A. S.
de Merás
,
T.
Saue
,
S. P. A.
Sauer
,
B.
Schimmelpfennig
,
K.
Sneskov
,
A. H.
Steindal
,
K. O.
Sylvester-Hvid
,
P. R.
Taylor
,
A. M.
Teale
,
E. I.
Tellgren
,
D. P.
Tew
,
A. J.
Thorvaldsen
,
L.
Thøgersen
,
O.
Vahtras
,
M. A.
Watson
,
D. J. D.
Wilson
,
M.
Ziolkowski
, and
H.
Ågren
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
269
(
2014
).
41.
“Dalton, a molecular electronic structure program, release dalton2016.1 (2015), see http://daltonprogram.org.”
42.
D.
Rappoport
and
F.
Furche
,
J. Chem. Phys.
133
,
134105
(
2010
).
43.
A.
Schäfer
,
H.
Horn
, and
R.
Ahlrichs
,
J. Chem. Phys.
97
,
2571
(
1992
).
44.
O.
Vahtras
,
J.
Almlöf
, and
M.
Feyereisen
,
Chem. Phys. Lett.
213
,
514
(
1993
).
45.
F.
Weigend
,
M.
Häser
,
H.
Patzelt
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
294
,
143
(
1998
).
46.
J. A.
Nelder
and
R.
Mead
,
Comput. J.
7
,
308
(
1965
).
47.
A.
Kasdan
,
E.
Herbst
, and
W.
Lineberger
,
Chem. Phys. Lett.
31
,
78
(
1975
).
48.
R.
Colin
and
A.
Douglas
,
Can. J. Phys.
46
,
61
(
1968
).
49.
G.
Bieri
,
L.
Åsbrink
, and
W.
von Niessen
,
J. Electron Spectrosc. Relat. Phenom.
23
,
281
(
1981
).
50.
K. B.
Bravaya
,
O.
Kostko
,
S.
Dolgikh
,
A.
Landau
,
M.
Ahmed
, and
A. I.
Krylov
,
J. Phys. Chem. A
114
,
12305
(
2010
).
51.
M.
Allan
,
E.
Heilbronner
, and
G.
Kaupp
,
Helv. Chim. Acta
59
,
1949
(
1976
).
52.
J.
Lorquet
and
C.
Cadet
,
Int. J. Mass Spectrom. Ion Phys.
7
,
245
(
1971
).
53.
H.
Rosenstock
,
J.
Dannacher
, and
J.
Liebman
,
Radiat. Phys. Chem.
20
,
7
(
1982
).

Supplementary Material

You do not currently have access to this content.