Although it has not been frequently discussed, contributions of the orientational cross-correlation (OCC) between entangled polymers are not negligible in the relaxation modulus. In the present study, OCC contributions were investigated for 4- and 6-arm star-branched and H-branched polymers by means of multi-chain slip-link simulations. Owing to the molecular-level description of the simulation, the segment orientation was traced separately for each molecule as well as each subchain composing the molecules. Then, the OCC was calculated between different molecules and different subchains. The results revealed that the amount of OCC between different molecules is virtually identical to that of linear polymers regardless of the branching structure. The OCC between constituent subchains of the same molecule is significantly smaller than the OCC between different molecules, although its intensity and time-dependent behavior depend on the branching structure as well as the molecular weight. These results lend support to the single-chain models given that the OCC effects are embedded into the stress-optical coefficient, which is independent of the branching structure.

1.
Y.
Masubuchi
,
Annu. Rev. Chem. Biomol. Eng.
5
,
11
(
2014
).
2.
J. A.
Kornfield
,
G. G.
Fuller
, and
D. S.
Pearson
,
Macromolecules
22
,
1334
(
1989
).
3.
M.
Doi
,
D.
Pearson
,
J.
Kornfield
, and
G.
Fuller
,
Macromolecules
22
,
1488
(
1989
).
4.
C. M.
Ylitalo
,
J. A.
Kornfield
,
G. G.
Fuller
, and
D. S.
Pearson
,
Macromolecules
24
,
749
(
1991
).
5.
R.
Graf
,
A.
Heuer
, and
H. W.
Spiess
,
Phys. Rev. Lett.
80
,
5738
(
1998
).
6.
J.
Gao
and
J. H.
Weiner
,
J. Chem. Phys.
91
,
3168
(
1989
).
7.
A. E.
Likhtman
,
S. K.
Sukumaran
, and
J.
Ramirez
,
Macromolecules
40
,
6748
(
2007
).
8.
A. E.
Likhtman
,
J. Non-Newtonian Fluid Mech.
157
,
158
(
2009
).
9.
J.
Cao
and
A. E.
Likhtman
,
Phys. Rev. Lett.
104
,
207801
(
2010
).
10.
Y.
Masubuchi
and
S. K.
Sukumaran
,
Nihon Reoroji Gakkaishi
41
,
1
(
2013
).
11.
Y.
Masubuchi
and
Y.
Amamoto
,
Nihon Reoroji Gakkaishi
44
,
219
(
2016
).
12.
Y.
Masubuchi
and
Y.
Amamoto
,
Macromolecules
49
,
9258
(
2016
).
13.
Y.
Masubuchi
,
Y.
Amamoto
,
A.
Pandey
, and
C.-Y.
Liu
,
Soft Matter
13
,
6585
(
2017
).
14.
Y.
Masubuchi
,
A.
Pandey
, and
Y.
Amamoto
,
J. Soc. Rheol., Jpn.
45
,
175
(
2017
).
15.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon Press
,
Oxford
,
1986
).
16.
S. T.
Milner
and
T. C. B.
McLeish
,
Phys. Rev. Lett.
81
,
725
(
1998
).
17.
A. E.
Likhtman
and
T. C. B.
McLeish
,
Macromolecules
35
,
6332
(
2002
).
18.
E.
van Ruymbeke
,
R.
Keunings
, and
C.
Bailly
,
J. Non-Newtonian Fluid Mech.
128
,
7
(
2005
).
19.
C. C.
Hua
and
J.
Schieber
,
J. Chem. Phys.
109
,
10018
(
1998
).
20.
R. N.
Khaliullin
and
J. D.
Schieber
,
Macromolecules
42
,
7504
(
2009
).
21.
R. G.
Larson
,
T.
Sridhar
,
L. G.
Leal
,
G. H.
McKinley
,
A. E.
Likhtman
, and
T. C. B.
McLeish
,
J. Rheol.
47
,
809
(
2003
).
22.
E.
van Ruymbeke
,
D.
Vlassopoulos
,
M.
Kapnistos
,
C. Y.
Liu
, and
C.
Bailly
,
Macromolecules
43
,
525
(
2010
).
24.
Y.
Masubuchi
,
G.
Ianniruberto
,
F.
Greco
, and
G.
Marrucci
,
J. Chem. Phys.
119
,
6925
(
2003
).
25.
S. T.
Milner
and
T. C. B.
McLeish
,
Macromolecules
30
,
2159
(
1997
).
26.
R. C.
Ball
and
T.
McLeish
,
Macromolecules
22
,
1911
(
1989
).
27.
T. C. B.
McLeish
,
Europhys. Lett.
6
,
511
(
1988
).
28.
R. G.
Larson
,
Macromolecules
34
,
4556
(
2001
).
29.
C.
Das
,
N. J.
Inkson
,
D. J.
Read
,
M. A.
Kelmanson
, and
T. C. B.
McLeish
,
J. Rheol.
50
,
207
(
2006
).
30.
E.
van Ruymbeke
,
C.
Bailly
,
R.
Keunings
, and
D.
Vlassopoulos
,
Macromolecules
39
,
6248
(
2006
).
31.
T.
Uneyama
and
Y.
Masubuchi
,
J. Chem. Phys.
135
,
184904
(
2011
).
32.
Y.
Masubuchi
,
T.
Uneyama
,
H.
Watanabe
,
G.
Ianniruberto
,
F.
Greco
, and
G.
Marrucci
,
J. Chem. Phys.
132
,
1
(
2010
).
33.
T.
Uneyama
and
Y.
Masubuchi
,
J. Chem. Phys.
137
,
154902
(
2012
).
34.
V. C.
Chappa
,
D. C.
Morse
,
A.
Zippelius
, and
M.
Müller
,
Phys. Rev. Lett.
109
,
148302
(
2012
).
35.
A.
Ramírez-Hernández
,
F. A.
Detcheverry
,
B. L.
Peters
,
V. C.
Chappa
,
K. S.
Schweizer
,
M.
Müller
, and
J. J.
de Pablo
,
Macromolecules
46
,
6287
(
2013
).
36.
M.
Langeloth
,
Y.
Masubuchi
,
M. C.
Böhm
, and
F.
Müller-plathe
,
J. Chem. Phys.
138
,
104907
(
2013
).
37.
W. W.
Graessley
and
J.
Roovers
,
Macromolecules
12
,
959
(
1979
).
38.
J.
Roovers
,
Macromolecules
17
,
1196
(
1984
).
39.
Y.
Masubuchi
,
H.
Watanabe
,
G.
Ianniruberto
,
F.
Greco
, and
G.
Marrucci
,
Macromolecules
41
,
8275
(
2008
).
40.
Y.
Masubuchi
,
G.
Ianniruberto
,
F.
Greco
, and
G.
Marrucci
,
J. Non-Newtonian Fluid Mech.
149
,
87
(
2008
).
41.
Y.
Masubuchi
,
T.
Yaoita
,
Y.
Matsumiya
, and
H.
Watanabe
,
J. Chem. Phys.
134
,
194905
(
2011
).
42.
Y.
Masubuchi
,
Y.
Matsumiya
,
H.
Watanabe
,
S.
Shiromoto
,
M.
Tsutsubuchi
, and
Y.
Togawa
,
Rheol. Acta
51
,
1
(
2012
).
43.
Y.
Masubuchi
,
Y.
Matsumiya
,
H.
Watanabe
,
G.
Marrucci
, and
G.
Ianniruberto
,
Macromolecules
47
,
3511
(
2014
).
44.
Y.
Masubuchi
,
J.-I. I.
Takimoto
,
K.
Koyama
,
G.
Ianniruberto
,
G.
Marrucci
, and
F.
Greco
,
J. Chem. Phys.
115
,
4387
(
2001
).
45.
Y.
Masubuchi
,
G.
Ianniruberto
,
F.
Greco
, and
G.
Marrucci
,
Modell. Simul. Mater. Sci. Eng.
12
,
S91
(
2004
).
46.
Y.
Masubuchi
,
G.
Ianniruberto
,
F.
Greco
, and
G.
Marrucci
,
Rheol. Acta
46
,
297
(
2006
).
47.
T. C. B.
McLeish
and
R. G.
Larson
,
J. Rheol.
42
,
81
(
1998
).
48.
T. C. B.
McLeish
,
J.
Allgaier
,
D. K.
Bick
,
G.
Bishko
,
P.
Biswas
,
R.
Blackwell
,
B.
Blottiere
,
N.
Clarke
,
B.
Gibbs
,
D. J.
Groves
,
A.
Hakiki
,
R. K.
Heenan
,
J. M.
Johnson
,
R.
Kant
,
D. J.
Read
, and
R. N.
Young
,
Macromolecules
32
,
6734
(
1999
).
49.
T. C. B.
McLeish
,
Macromolecules
21
,
1062
(
1988
).
You do not currently have access to this content.