We present the cryogenic (26 K) IR spectra of selected [Nin(N2)m]+ (n = 5–20, m = 1 − mmax), which strongly reveal n- and m-dependent features in the N2 stretching region, in conjunction with density functional theory modeling of some of these findings. The observed spectral features allow us to refine the kinetic classification [cf. J. Mohrbach, S. Dillinger, and G. Niedner-Schatteburg, J. Chem. Phys. 147, 184304 (2017)] and to define four classes of structure related surface adsorption behavior: Class (1) of Ni6+, Ni13+, and Ni19+ are highly symmetrical clusters with all smooth surfaces of equally coordinated Ni atoms that entertain stepwise N2 adsorption up to stoichiometric N2:Nisurface saturation. Class (2) of Ni12+ and Ni18+ are highly symmetrical clusters minus one. Their relaxed smooth surfaces reorganize by enhanced N2 uptake toward some low coordinated Ni surface atoms with double N2 occupation. Class (3) of Ni5+ and Ni7+ through Ni11+ are small clusters of rough surfaces with low coordinated Ni surface atoms, and some reveal semi-internal Ni atoms of high next-neighbor coordination. Surface reorganization upon N2 uptake turns rough into rough surface by Ni atom migration and turns octahedral based structures into pentagonal bipyramidal structures. Class (4) of Ni14+ through Ni17+ and Ni20+ are large clusters with rough and smooth surface areas. They possess smooth icosahedral surfaces with some proximate capping atom(s) on one hemisphere of the icosahedron with the other one largely unaffected.

1.
J. M.
Thomas
and
W. J.
Thomas
,
Principles and Practice of Heterogeneous Catalysis
(
Wiley
,
1997
).
2.
T.
Bligaard
and
J. K.
Nørskov
, in
Chemical Bonding at Surfaces and Interfaces
, edited by
A.
Nilsson
,
L. G. M.
Pettersson
, and
J.
Nørskov
(
Elsevier
,
Amsterdam
,
2008
), p.
255
.
3.
, edited by
G.
Ertl
,
H.
Knözinger
, and
J.
Weitkamp
(
VCH Verlagsgesellschaft
,
1997
).
4.
B.
Cornils
,
W. A.
Herrmann
, and
H.-W.
Zanthoff
,
Catalysis from A to Z
(
Wiley-VCH
,
New York
,
2013
).
5.
R.
Schlögl
and
S. B.
Abd Hamid
,
Angew. Chem., Int. Ed.
43
,
1628
(
2004
).
6.
P. B.
Armentrout
,
Catal. Sci. Technol.
4
,
2741
(
2014
).
7.
E. L.
Muetterties
,
Bull. Soc. Chim. Belg.
84
,
959
(
1975
).
8.
C.
Berg
,
G.
NiednerSchatteburg
, and
V. E.
Bondybey
, in
Second International Conference on Low Temperature Chemistry
, edited by
J. R.
Durig
and
K. J.
Klabunde
(
BkMk Press
,
Kansas City
,
1996
), p.
189
.
9.
S. M.
Lang
and
T. M.
Bernhardt
,
Phys. Chem. Chem. Phys.
14
,
9255
(
2012
).
11.
E. L.
Muetterties
,
T. N.
Rhodin
,
E.
Band
,
C. F.
Brucker
, and
W. R.
Pretzer
,
Chem. Rev.
79
,
91
(
1979
).
12.
G.
Ertl
,
Angew. Chem., Int. Ed.
47
,
3524
(
2008
).
13.
E.
Shustorovich
, in
Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry
, edited by
A.
Veillard
(
Springer
,
The Netherlands
,
1986
), p.
445
.
14.
R.
Schlögl
, in
Handbook of Heterogeneous Catalysis
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
2008
).
15.
F.
Bozso
,
G.
Ertl
,
M.
Grunze
, and
M.
Weiss
,
J. Catal.
49
,
18
(
1977
).
16.
F.
Bozso
,
G.
Ertl
, and
M.
Weiss
,
J. Catal.
50
,
519
(
1977
).
18.
G.
Ertl
,
S. B.
Lee
, and
M.
Weiss
,
Surf. Sci.
114
,
515
(
1982
).
19.
M.
Grunze
,
M.
Golze
,
W.
Hirschwald
,
H. J.
Freund
,
H.
Pulm
,
U.
Seip
,
M. C.
Tsai
,
G.
Ertl
, and
J.
Kuppers
,
Phys. Rev. Lett.
53
,
850
(
1984
).
20.
M. C.
Tsai
,
U.
Ship
,
I. C.
Bassignana
,
J.
Küppers
, and
G.
Ertl
,
Surf. Sci.
155
,
387
(
1985
).
21.
H. J.
Freund
,
B.
Bartos
,
R. P.
Messmer
,
M.
Grunze
,
H.
Kuhlenbeck
, and
M.
Neumann
,
Surf. Sci.
185
,
187
(
1987
).
22.
M. D.
Morse
,
M. E.
Geusic
,
J. R.
Heath
, and
R. E.
Smalley
,
J. Chem. Phys.
83
,
2293
(
1985
).
23.
L.
Tan
,
F. Y.
Liu
, and
P. B.
Armentrout
,
J. Chem. Phys.
124
,
084302
(
2006
).
24.
M.
Grunze
,
R. K.
Driscoll
,
G. N.
Burland
,
J. C. L.
Cornish
, and
J.
Pritchard
,
Surf. Sci.
89
,
381
(
1979
).
25.
M. E.
Brubaker
and
M.
Trenary
,
J. Chem. Phys.
85
,
6100
(
1986
).
26.
M. E.
Brubaker
and
M.
Trenary
,
J. Electron Spectrosc. Relat. Phenom.
44
,
47
(
1987
).
27.
K.
Horn
,
J.
Dinardo
,
W.
Eberhardt
,
H. J.
Freund
, and
E. W.
Plummer
,
Surf. Sci.
118
,
465
(
1982
).
28.
F. Y.
Liu
,
R.
Liyanage
, and
P. B.
Armentrout
,
J. Chem. Phys.
117
,
132
(
2002
).
29.
D.
Vardhan
,
R.
Liyanage
, and
P. B.
Armentrout
,
J. Chem. Phys.
119
,
4166
(
2003
).
30.
F. Y.
Liu
,
X. G.
Zhang
,
R.
Liyanage
, and
P. B.
Armentrout
,
J. Chem. Phys.
121
,
10976
(
2004
).
31.
M. A.
Duncan
,
Annu. Rev. Phys. Chem.
48
,
69
(
1997
).
32.
M. A.
Duncan
,
Int. Rev. Phys. Chem.
22
,
407
(
2003
).
33.
N. R.
Walker
,
R. S.
Walters
, and
M. A.
Duncan
,
New J. Chem.
29
,
1495
(
2005
).
34.
J.
Roithova
,
Chem. Soc. Rev.
41
,
547
(
2012
).
35.
J.
Oomens
,
B. G.
Sartakov
,
G.
Meijer
, and
G.
von Helden
,
Int. J. Mass Spectrom.
254
,
1
(
2006
).
36.
L.
MacAleese
and
P.
Maitre
,
Mass Spectrom. Rev.
26
,
583
(
2007
).
37.
W.
Schöllkopf
,
S.
Gewinner
,
H.
Junkes
,
A.
Paarmann
,
G.
von Helden
,
H.
Bluem
, and
A. M. M.
Todd
,
Proc. SPIE
9512
,
95121L
(
2015
).
38.
P.
Gruene
,
A.
Fielicke
,
G.
Meijer
, and
D. M.
Rayner
,
Phys. Chem. Chem. Phys.
10
,
6144
(
2008
).
39.
I.
Swart
,
F. M. F.
de Groot
,
B. M.
Weckhuysen
,
P.
Gruene
,
G.
Meijer
, and
A.
Fielicke
,
J. Phys. Chem. A
112
,
1139
(
2008
).
40.
J.
Chatt
and
L. A.
Duncanson
,
J. Chem. Soc.
1953
,
2939
.
41.
G.
Blyholder
,
J. Phys. Chem.
68
,
2772
(
1964
).
42.
A. D.
Brathwaite
,
H. L.
Abbott-Lyon
, and
M. A.
Duncan
,
J. Phys. Chem. A
120
,
7659
(
2016
).
43.
E. D.
Pillai
,
T. D.
Jaeger
, and
M. A.
Duncan
,
J. Phys. Chem. A
109
,
3521
(
2005
).
44.
E. D.
Pillai
,
T. D.
Jaeger
, and
M. A.
Duncan
,
J. Am. Chem. Soc.
129
,
2297
(
2007
).
45.
V. G.
Grigoryan
and
M.
Springborg
,
Phys. Rev. B
70
,
205415
(
2004
).
46.
C. L.
Cleveland
and
U.
Landman
,
J. Chem. Phys.
94
,
7376
(
1991
).
47.
G. L.
Gutsev
,
C. W.
Weatherford
,
K. G.
Belay
,
B. R.
Ramachandran
, and
P.
Jena
,
J. Chem. Phys.
138
, 164303 (
2013
).
48.
J. A.
Alonso
,
Chem. Rev.
100
,
637
(
2000
).
49.
E.
Curotto
,
A.
Matro
,
D. L.
Freeman
, and
J. D.
Doll
,
J. Chem. Phys.
108
,
729
(
1998
).
50.
M.
Boyukata
,
Z. B.
Guvenc
,
S.
Ozcelik
,
P.
Durmus
, and
J.
Jellinek
,
Int. J. Quantum Chem.
84
,
208
(
2001
).
51.
C.
Kerpal
,
D. J.
Harding
,
J. T.
Lyon
,
G.
Meijer
, and
A.
Fielicke
,
J. Phys. Chem. C
117
,
12153
(
2013
).
52.
S.
Dillinger
,
J.
Mohrbach
,
J.
Hewer
,
M.
Gaffga
, and
G.
Niedner-Schatteburg
,
Phys. Chem. Chem. Phys.
17
,
10358
(
2015
).
53.
E. K.
Parks
,
L.
Zhu
,
J.
Ho
, and
S. J.
Riley
,
J. Chem. Phys.
100
,
7206
(
1994
).
54.
E. K.
Parks
,
L.
Zhu
,
J.
Ho
, and
S. J.
Riley
,
J. Chem. Phys.
102
,
7377
(
1995
).
55.
J.
Mohrbach
,
S.
Dillinger
, and
G.
Niedner-Schatteburg
,
J. Phys. Chem. C
121
,
10907
(
2017
).
56.
S.
Dillinger
,
J.
Mohrbach
, and
G.
Niedner-Schatteburg
,
J. Chem. Phys.
147
,
184304
(
2017
).
57.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
58.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
59.
M.
Dolg
,
U.
Wedig
,
H.
Stoll
, and
H.
Preuss
,
J. Chem. Phys.
86
,
866
(
1987
).
60.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
M. C. X.
Li
,
A.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
R. K. T.
Keith
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, gaussian 09, Revision D.01,
Gaussian, Inc.
,
Wallingford, CT
,
2013
.
61.
A.
Fielicke
,
G.
von Helden
,
G.
Meijer
,
D. B.
Pedersen
,
B.
Simard
, and
D. M.
Rayner
,
J. Chem. Phys.
124
,
194305
(
2006
).
62.
J.
Yoshinobu
,
R.
Zenobi
,
J.
Xu
,
Z.
Xu
, and
J. T.
Yates
, Jr.
,
J. Chem. Phys.
95
,
9393
(
1991
).
63.
A.
Langenberg
,
K.
Hirsch
,
A.
Lawicki
,
V.
Zamudio-Bayer
,
M.
Niemeyer
,
P.
Chmiela
,
B.
Langbehn
,
A.
Terasaki
,
B. V.
Issendorff
, and
J. T.
Lau
,
Phys. Rev. B
90
,
184420
(
2014
).
64.
J.
Meyer
,
M.
Tombers
,
C.
van Wullen
,
G.
Niedner-Schatteburg
,
S.
Peredkov
,
W.
Eberhardt
,
M.
Neeb
,
S.
Palutke
,
M.
Martins
, and
W.
Wurth
,
J. Chem. Phys.
143
,
104302
(
2015
).

Supplementary Material

You do not currently have access to this content.