Values of the fifth virial coefficient, compressibility factors, and fluid-fluid coexistence curves of binary asymmetric nonadditive mixtures of hard disks are reported. The former correspond to a wide range of size ratios and positive nonadditivities and have been obtained through a standard Monte Carlo method for the computation of the corresponding cluster integrals. The compressibility factors as functions of density, derived from canonical Monte Carlo simulations, have been obtained for two values of the size ratio (q = 0.4 and q = 0.5), a value of the nonadditivity parameter (Δ = 0.3), and five values of the mole fraction of the species with the biggest diameter (x1 = 0.1, 0.3, 0.5, 0.7, and 0.9). Some points of the coexistence line relative to the fluid-fluid phase transition for the same values of the size ratios and nonadditivity parameter have been obtained from Gibbs ensemble Monte Carlo simulations. A comparison is made between the numerical results and those that follow from some theoretical equations of state.

1.
2.
E.
Dickinson
,
Chem. Phys. Lett.
66
,
500
(
1979
).
3.
E.
Dickinson
,
J. Chem. Soc., Faraday Trans. 2
76
,
1458
(
1980
).
4.
R.
Tenne
and
E.
Bergmann
,
Phys. Rev. A
17
,
2036
(
1978
).
5.
U. N.
Singh
and
S. K.
Sinha
,
Pramana
20
,
327
(
1983
).
6.
B. M.
Mishra
and
S. K.
Sinha
,
J. Math. Phys.
26
,
495
(
1985
).
7.
R. J.
Bearman
and
R. M.
Mazo
,
J. Chem. Phys.
88
,
1235
(
1988
).
8.
R. J.
Bearman
and
R. M.
Mazo
,
J. Chem. Phys.
91
,
1227
(
1989
).
9.
R. J.
Bearman
and
R. M.
Mazo
,
J. Chem. Phys.
93
,
6694
(
1990
).
10.
V.
Ehrenberg
,
H. M.
Schaink
, and
C.
Hoheisel
,
Physica A
169
,
365
(
1990
).
11.
D. P.
Fraser
,
M. J.
Zuckermann
, and
O. G.
Mouritsen
,
Phys. Rev. A
43
,
6642
(
1991
).
12.
C. C.
Marti
and
B. J.
Croset
,
Surf. Sci.
318
,
229
(
1994
).
13.
P.
Nielaba
,
Int. J. Thermophys.
17
,
157
(
1996
).
14.
M.-O.
Ihm
,
F.
Schneider
, and
P.
Nielaba
,
Prog. Colloid Polym. Sci.
104
,
166
(
1997
).
15.
P.
Nielaba
, in
Annual Reviews of Computational Physics
, edited by
D.
Stauffer
(
World Scientific
,
Singapore
,
1997
), pp.
137
200
.
16.
F.
Saija
,
G.
Fiumara
, and
P. V.
Giaquinta
,
J. Chem. Phys.
108
,
9098
(
1998
).
17.
M.
Al-Naafa
,
J. B.
El-Yakubu
, and
E. Z.
Hamad
,
Fluid Phase Equilib.
154
,
33
(
1999
).
18.
E. Z.
Hamad
and
G. O.
Yahaya
,
Fluid Phase Equilib.
168
,
59
(
2000
).
19.
P.
Nielaba
, in
Computational Methods in Surface and Colloid Science
, Volume 89 of Surfactant Science Series, edited by
M.
Borówko
(
CRC Press
,
Boca Raton
,
2000
), pp.
77
134
.
20.
F.
Saija
and
P. V.
Giaquinta
,
J. Chem. Phys.
117
,
5780
(
2002
).
21.
R.
Castañeda-Priego
,
A.
Rodríguez-López
, and
J. M. M.
Alcaraz
,
J. Phys.: Condens. Matter
15
,
S3393
(
2003
).
22.
R.
Faller
and
T. L.
Kuhl
,
Soft Matter
1
,
343
(
2003
).
23.
A.
Santos
,
M.
López de Haro
, and
S. B.
Yuste
,
J. Chem. Phys.
122
,
024514
(
2005
).
24.
A.
Buhot
,
J. Chem. Phys.
122
,
024105
(
2005
).
25.
N.
Hoffmann
,
C. N.
Likos
, and
H.
Löwen
,
J. Phys.: Condens. Matter
18
,
10193
(
2006
).
26.
M.
Barcenas
,
P.
Orea
,
E.
Buenrostro-González
,
L. S.
Zamudio-Rivera
, and
Y.
Duda
,
Energy Fuels
22
,
1917
(
2008
).
27.
R. C.
Guáqueta
, Ph.D. thesis,
University of Illinois
,
Urbana-Champaign
,
2009
.
28.
L.
Muñoz-Salazar
and
G.
Odriozola
,
Mol. Simul.
36
,
175
(
2010
).
29.
A.
Santos
,
M.
López de Haro
, and
S. B.
Yuste
,
J. Chem. Phys.
132
,
204506
(
2010
).
30.
F.
Saija
,
Phys. Chem. Chem. Phys.
13
,
11885
(
2011
).
31.
F.
Saija
,
A.
Santos
,
S. B.
Yuste
, and
M.
López de Haro
,
J. Chem. Phys.
136
,
184505
(
2012
).
32.
G.
Fiumara
,
O. D.
Pandaram
,
G.
Pellicane
, and
F.
Saija
,
J. Chem. Phys.
141
,
214508
(
2014
).
33.
W. T.
Góźdź
and
A.
Ciach
,
Condens. Matter Phys.
19
,
13002
(
2016
).
34.
A.
Santos
,
A Concise Course on the Theory of Classical Liquids: Basics and Selected Topics
, Volume 923 of Lecture Notes in Physics (
Springer
,
New York
,
2016
).
35.
S.
Labík
,
J.
Kolafa
, and
A.
Malijevský
,
Phys. Rev. E
71
,
021105
(
2005
).
36.
E.
Hamad
,
J. Chem. Phys.
101
,
10195
(
1994
).
37.
E. Z.
Hamad
,
J. Chem. Phys.
105
,
3222
(
1996
).
38.
E. Z.
Hamad
,
J. Chem. Phys.
105
,
3229
(
1996
).
39.
M.
Baus
and
J. L.
Colot
,
Phys. Rev. A
36
,
3912
(
1987
).
40.
J.-L.
Barrat
,
H.
Xu
,
J.-P.
Hansen
, and
M.
Baus
,
J. Phys. C
21
,
3165
(
1988
).
41.
F.
Saija
,
G.
Fiumara
, and
P. V.
Giaquinta
,
Mol. Phys.
87
,
991
(
1996
);
F.
Saija
,
G.
Fiumara
, and
P. V.
Giaquinta
,
Mol. Phys.
92
,
1089
(
1997
).
42.
R. J.
Wheatley
,
Phys. Rev. Lett.
110
,
200601
(
2013
).
43.
C.
Zhang
and
B. M.
Pettitt
,
Mol. Phys.
112
,
1427
(
2014
).
44.
T.
Boublík
and
I.
Nezbeda
,
Collect. Czech. Chem. Commun.
51
,
2301
(
1986
).
45.
B.
Bors̆tnik
,
Vestn. Slov. Kem. Drus.
39
,
145
(
1992
).
47.
48.
49.
S.
Luding
and
O.
Strauß
, in
Granular Gases
, Volume 564 of Lecture Notes in Physics, edited by
T.
Pöschel
and
S.
Luding
(
Springer
,
Berlin
,
2001
), pp.
389
409
.
50.
S.
Luding
and
A.
Santos
,
J. Chem. Phys.
121
,
8458
(
2004
).
51.
A. Z.
Panagiotopoulos
,
Mol. Simul.
9
,
1
(
1992
).
52.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
, 2nd ed. (
Academic Press
,
San Diego
,
2002
).
53.
B.
Widom
,
J. Chem. Phys.
39
,
2808
(
1963
).

Supplementary Material

You do not currently have access to this content.