The valence shell photoelectron spectra of 2-chloropyridine and 3-chloropyridine have been studied both experimentally and theoretically. Synchrotron radiation has been employed to record angle resolved photoelectron spectra in the photon energy range 20–100 eV, and these have enabled anisotropy parameters and branching ratios to be derived. The experimental results have been compared with theoretical predictions obtained using the continuum multiple scattering Xα approach. This comparison shows that the anisotropy parameter associated with the nominally chlorine lone-pair orbital lying in the molecular plane is strongly affected by the atomic Cooper minimum. In contrast, the photoionization dynamics of the second lone-pair orbital, orientated perpendicular to the molecular plane, seem relatively unaffected by this atomic phenomenon. The outer valence ionization has been studied theoretically using the third-order algebraic-diagrammatic construction (ADC(3)) approximation scheme for the one-particle Green’s function, the outer valence Green’s function method, and the equation-of-motion (EOM) coupled cluster (CC) theory at the level of the EOM-IP-CCSD and EOM-EE-CC3 models. The convergence of the results to the complete basis set limit has been investigated. The ADC(3) method has been employed to compute the complete valence shell ionization spectra of 2-chloropyridine and 3-chloropyridine. The relaxation mechanism for ionization of the nitrogen σ-type lone-pair orbital (σN LP) has been found to be different to that for the corresponding chlorine lone-pair (σCl LP). For the σN LP orbital, π-π* excitations play the main role in the screening of the lone-pair hole. In contrast, excitations localized at the chlorine site involving the chlorine πCl LP lone-pair and the Cl 4p Rydberg orbital are the most important for the σCl LP orbital. The calculated photoelectron spectra have allowed assignments to be proposed for most of the structure observed in the experimental spectra. The theoretical work also highlights the formation of satellite states, due to the breakdown of the single particle model of ionization, in the inner valence region.

1.
A. B.
Trofimov
,
D. M. P.
Holland
,
I.
Powis
,
R. C.
Menzies
,
A. W.
Potts
,
L.
Karlsson
,
E. V.
Gromov
,
I. L.
Badsyuk
, and
J.
Schirmer
,
J. Chem. Phys.
146
,
244307
(
2017
).
2.
I.
Reineck
,
R.
Maripuu
,
H.
Veenhuizen
,
L.
Karlsson
,
K.
Siegbahn
,
M. S.
Powar
,
W. N.
Zu
,
J. M.
Rong
, and
S. H.
Al-Shamma
,
J. Electron Spectrosc. Relat. Phenom.
27
,
15
(
1982
).
3.
N.
Kishimoto
and
K.
Ohno
,
J. Phys. Chem. A
104
,
6940
(
2000
).
4.
S. Y.
Lui
,
K.
Alnama
,
J.
Matsumoto
,
K.
Nishizawa
,
H.
Kohguchi
,
Y. P.
Lee
, and
T.
Suzuki
,
J. Phys. Chem. A
115
,
2953
(
2011
).
5.
J.
Schirmer
,
L. S.
Cederbaum
, and
O.
Walter
,
Phys. Rev. A
28
,
1237
(
1983
).
6.
J.
Schirmer
and
G.
Angonoa
,
J. Chem. Phys.
91
,
1754
(
1989
).
7.
W.
von Niessen
,
J.
Schirmer
, and
L. S.
Cederbaum
,
Comput. Phys. Rep.
1
,
57
(
1984
).
8.
V. G.
Zakrzewski
and
J. V.
Ortiz
,
Int. J. Quantum Chem. Suppl.
28
,
23
(
1994
).
9.
J. V.
Ortiz
, in
Computational Chemistry: Reviews of Current Trends
, edited by
J.
Leszcynski
(
World Scientific
,
Singapore
,
1997
), Vol. 2, p.
1
.
10.
S. T.
Manson
,
D. J.
Kennedy
,
A. F.
Starace
, and
D.
Dill
,
Planet. Space Sci.
22
,
1535
(
1974
).
11.
J. W.
Cooper
,
Phys. Rev.
128
,
681
(
1962
).
12.
U.
Fano
and
J. W.
Cooper
,
Rev. Mod. Phys.
40
,
441
(
1968
).
13.
S. T.
Manson
,
A.
Msezane
,
A. F.
Starace
, and
S.
Shahabi
,
Phys. Rev. A
20
,
1005
(
1979
).
14.
Y.
Hikosaka
,
J. H. D.
Eland
,
T. M.
Watson
, and
I.
Powis
,
J. Chem. Phys.
115
,
4593
(
2001
).
15.
D. W.
Turner
,
C.
Baker
,
A. D.
Baker
, and
C. R.
Brundle
,
Molecular Photoelectron Spectroscopy
(
Wiley-Interscience
,
London
,
1970
).
16.
A.
Modelli
and
G.
Distefano
,
J. Electron Spectrosc. Relat. Phenom.
23
,
323
(
1981
).
17.
G. R.
Caine
,
S. J.
Dunne
, and
E. I.
Von Nagy-Felsobuki
,
J. Heterocycl. Chem.
32
,
89
(
1995
).
18.
C.
Ma
,
L.
Yao
, and
M.
Ge
,
J. Mol. Struct.
881
,
123
(
2008
).
19.
M. R.
Basila
and
D. J.
Clancy
,
J. Phys. Chem.
67
,
1551
(
1963
).
20.
D.
Stefanović
and
H. F.
Grützmacher
,
Org. Mass Spectrom.
9
,
1052
(
1974
).
21.
L. S.
Cederbaum
,
W.
Domcke
,
J.
Schirmer
, and
W.
von Niessen
,
Adv. Chem. Phys.
65
,
115
(
1986
).
22.
D. M. P.
Holland
,
Phys. Scr.
36
,
22
(
1987
).
23.
P.
Finetti
,
D. M. P.
Holland
,
C. J.
Latimer
,
C.
Binns
,
F. M.
Quinn
,
M. A.
Bowler
,
A. F.
Grant
, and
C. S.
Mythen
,
Nucl. Instrum. Methods Phys. Res., Sect. B
184
,
627
(
2001
).
24.
D. M. P.
Holland
,
M. A.
MacDonald
,
M. A.
Hayes
,
P.
Baltzer
,
L.
Karlsson
,
M.
Lundqvist
,
B.
Wannberg
, and
W.
von Niessen
,
Chem. Phys.
188
,
317
(
1994
).
25.
S. H.
Southworth
,
A. C.
Parr
,
J. E.
Hardis
,
J. L.
Dehmer
, and
D. M. P.
Holland
,
Nucl. Instrum. Methods Phys. Res., Sect. A
246
,
782
(
1986
).
26.
A. B.
Trofimov
,
J.
Schirmer
,
D. M. P.
Holland
,
L.
Karlsson
,
R.
Maripuu
,
K.
Siegbahn
, and
A. W.
Potts
,
Chem. Phys.
263
,
167
(
2001
).
27.
A. W.
Potts
,
A. B.
Trofimov
,
J.
Schirmer
,
D. M. P.
Holland
, and
L.
Karlsson
,
Chem. Phys.
271
,
337
(
2001
).
28.
A. B.
Trofimov
,
J.
Schirmer
,
D. M. P.
Holland
,
A. W.
Potts
,
L.
Karlsson
,
R.
Maripuu
, and
K.
Siegbahn
,
J. Phys. B: At., Mol. Opt. Phys.
35
,
5051
(
2002
).
29.
D. M. P.
Holland
,
A. W.
Potts
,
L.
Karlsson
,
I. L.
Zaytseva
,
A. B.
Trofimov
, and
J.
Schirmer
,
Chem. Phys.
352
,
205
(
2008
).
30.
A. W.
Potts
,
D. M. P.
Holland
,
I.
Powis
,
L.
Karlsson
,
A. B.
Trofimov
, and
I. L.
Bodzuk
,
Chem. Phys.
415
,
84
(
2013
).
31.
I.
Powis
,
A. B.
Trofimov
,
I. L.
Bodzuk
,
D. M. P.
Holland
,
A. W.
Potts
, and
L.
Karlsson
,
Chem. Phys.
415
,
291
(
2013
).
32.
D. M. P.
Holland
,
I.
Powis
,
A. B.
Trofimov
,
I. L.
Bodzuk
,
D. Yu.
Soshnikov
,
A. W.
Potts
, and
L.
Karlsson
,
Chem. Phys.
448
,
61
(
2015
).
33.
The ADC(3) code originally written by
G.
Angonoa
,
O.
Walter
, and
J.
Schirmer
; Further developed by
M. K.
Scheller
and
A. B.
Trofimov
.
34.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
,
J. Comput. Chem.
14
,
1347
(
1993
).
35.
M. S.
Gordon
and
M. W.
Schmidt
, in
Advances in Electronic Structure Theory: GAMESS a Decade Later
, edited by
C. E.
Dykstra
,
G.
Frenking
,
K. S.
Kim
, and
G. E.
Scuseria
(
Elsevier
,
Amsterdam
,
2005
), p.
1167
.
36.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
37.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6769
(
1992
).
38.
H.
Sekino
and
R. J.
Bartlett
,
Int. J. Quantum Chem. Suppl.
18
,
255
(
1984
).
39.
A. I.
Krylov
,
Annu. Rev. Phys. Chem.
59
,
433
(
2008
).
40.
M.
Nooijen
and
J. G.
Snijders
,
Int. J. Quantum Chem. Suppl.
26
,
55
(
1992
).
41.
J. F.
Stanton
and
J.
Gauss
,
J. Chem. Phys.
103
,
1064
(
1995
).
42.
Y.
Shao
 et al,
Mol. Phys.
113
,
184
(
2015
).
43.
J. F.
Stanton
and
J.
Gauss
,
J. Chem. Phys.
111
,
8785
(
1999
).
44.
CFOUR, Coupled cluster techniques for Computational Chemistry, a quantum-chemical program package by
J. F.
Stanton
,
J.
Gauss
,
M. E.
Harding
, and
P. G.
Szalay
, with contributions from
A. A.
Auer
,
R. J.
Bartlett
,
U.
Benedikt
,
C.
Berger
,
D. E.
Bernholdt
,
Y. J.
Bomble
,
L.
Cheng
,
O.
Christiansen
,
M.
Heckert
,
O.
Heun
,
C.
Huber
,
T.-C.
Jagau
,
D.
Jonsson
,
J.
Jusélius
,
K.
Klein
,
W. J.
Lauderdale
,
D. A.
Matthews
,
T.
Metzroth
,
L. A.
Mück
,
D. P.
O’Neill
,
D. R.
Price
,
E.
Prochnow
,
C.
Puzzarini
,
K.
Ruud
,
F.
Schiffmann
,
W.
Schwalbach
,
C.
Simmons
,
S.
Stopkowicz
,
A.
Tajti
,
J.
Vázquez
,
F.
Wang
, and
J. D.
Watts
and the integral packages MOLECULE (
J.
Almlöf
and
P. R.
Taylor
), PROPS (
P. R.
Taylor
), ABACUS (
T.
Helgaker
,
H. J. Aa.
Jensen
,
P.
Jørgensen
, and
J.
Olsen
), and ECP routines by
A. V.
Mitan
and
C.
van Wüllen
, for the current version, see http://www.cfour.de.
45.
M. J.
Frisch
 et al, gaussian 09, Revision C.01,
Gaussian, Inc.
,
Wallingford, CT
,
2010
.
46.
R.
Dennington
,
T.
Keith
, and
J.
Millam
, GaussView, Version 5,
Semichem Inc.
,
Shawnee Mission, KS
,
2009
.
47.
G.
Schaftenaar
and
J. H.
Noordik
, “
Molden: A pre- and post-processing program for molecular and electronic structures
,”
J. Comput.-Aided Mol. Des.
14
,
123
(
2000
).
48.
J.
Schirmer
,
M.
Braunstein
,
M.-T.
Lee
, and
V.
McKoy
, in
VUV and Soft X-Ray Photoionization
, edited by
U.
Becker
and
D. A.
Shirley
(
Plenum Press
,
New York
,
2001
), p.
105
.
49.
G.
Born
,
H. A.
Kurtz
, and
Y.
Öhrn
,
J. Chem. Phys.
68
,
74
(
1978
).
50.
D. M. P.
Holland
,
I.
Powis
,
G.
Öhrwall
,
L.
Karlsson
, and
W.
von Niessen
,
Chem. Phys.
326
,
535
(
2006
).
51.
J. G.
Norman
,
J. Chem. Phys.
61
,
4630
(
1974
).
52.
R. S.
Mulliken
,
J. Chem. Phys.
23
,
1833
(
1955
).
53.
D.
Feller
,
J. Chem. Phys.
96
,
6104
(
1992
).
54.
D. M. P.
Holland
,
L.
Karlsson
, and
W.
von Niessen
,
J. Electron Spectrosc. Relat. Phenom.
113
,
221
(
2001
).
55.
J. P.
Foster
and
F.
Weinhold
,
J. Am. Chem. Soc.
102
,
7211
(
1980
).
56.
F.
Weinhold
and
C. R.
Landis
,
Discovering Chemistry with Natural Bond Orbitals
(
Wiley-VCH
,
Hoboken
,
2012
).
57.
E. D.
Glendening
,
J. K.
Badenhoop
,
A. E.
Reed
,
J. E.
Carpenter
,
J. A.
Bohmann
,
C. M.
Morales
,
C. R.
Landis
, and
F.
Weinhold
, NBO 6.0,
Theoretical Chemistry Institute, University of Wisconsin
,
Madison
.
58.
E. D.
Glendening
,
C. R.
Landis
, and
F.
Weinhold
,
J. Comput. Chem.
34
,
1429
(
2013
).
59.
I.
Powis
,
D. M. P.
Holland
,
E.
Antonsson
,
M.
Patanen
,
C.
Nicolas
,
C.
Miron
,
M.
Schneider
,
D. Yu.
Soshnikov
,
A.
Dreuw
, and
A. B.
Trofimov
,
J. Chem. Phys.
143
,
144304
(
2015
).
60.
A. W.
Potts
,
D.
Edvardsson
,
L.
Karlsson
,
D. M. P.
Holland
,
M. A.
MacDonald
,
M. A.
Hayes
,
R.
Maripuu
,
K.
Siegbahn
, and
W.
von Niessen
,
Chem. Phys.
254
,
385
(
2000
).

Supplementary Material

You do not currently have access to this content.