A procedure is proposed to produce intermolecular potential energy surfaces from limited data. The procedure involves generation of geometrical configurations using a Latin hypercube design, with a maximin criterion, based on inverse internuclear distances. Gaussian processes are used to interpolate the data, using over-specified inverse molecular distances as covariates, greatly improving the interpolation. Symmetric covariance functions are specified so that the interpolation surface obeys all relevant symmetries, reducing prediction errors. The interpolation scheme can be applied to many important molecular interactions with trivial modifications. Results are presented for three systems involving CO2, a system with a deep energy minimum (HFHF), and a system with 48 symmetries (CH4N2). In each case, the procedure accurately predicts an independent test set. Training this method with high-precision abinitio evaluations of the CO2CO interaction enables a parameter-free, first-principles prediction of the CO2CO cross virial coefficient that agrees very well with experiments.

1.
D.
Silver
,
A.
Huang
,
C. J.
Maddison
,
A.
Guez
,
L.
Sifre
,
G. V. D.
Driessche
,
J.
Schrittwieser
,
I.
Antonoglou
,
V.
Panneershelvam
,
M.
Lanctot
,
S.
Dieleman
,
D.
Grewe
,
J.
Nham
,
N.
Kalchbrenner
,
I.
Sutskever
,
T.
Lillicrap
,
M.
Leach
,
K.
Kavukcuoglu
,
T.
Graepel
, and
D.
Hassabis
,
Nature
529
,
484
(
2016
).
2.
R.
Chen
,
E.
Jiao
,
H.
Zhu
, and
D.
Xie
,
J. Chem. Phys.
133
,
104302
(
2010
).
3.
H.
Li
,
P.-N.
Roy
, and
R. J.
Le Roy
,
J. Chem. Phys.
132
,
214309
(
2010
).
4.
R.
Hellmann
,
E.
Bich
,
E.
Vogel
, and
V.
Vesovic
,
J. Chem. Phys.
141
,
224301
(
2014
).
5.
Y.
Cui
,
H.
Ran
, and
D.
Xie
,
J. Chem. Phys.
130
,
224311
(
2009
).
6.
G. S.
Kimeldorf
and
G.
Wahba
,
Ann. Math. Stat.
41
,
495
(
1970
).
7.
C.
Rasmussen
and
C. K. I.
Williams
,
Gaussian Processes for Machine Learning
(
MIT Press
,
2006
).
8.
T.-S.
Ho
and
H.
Rabitz
,
J. Chem. Phys.
113
,
3960
(
2000
).
9.
A. P.
Bartok
and
G.
Csanyi
,
Int. J. Quantum Chem.
115
,
1051
(
2015
).
10.
A. P.
Bartok
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csanyi
,
Phys. Rev. Lett.
104
,
136403
(
2010
).
11.
W. J.
Szlachta
,
A. P.
Bartok
, and
G.
Csanyi
,
Phys. Rev. B
90
,
104108
(
2014
).
12.
M.
Rupp
,
M. R.
Bauer
,
R.
Wilcken
,
A.
Lange
,
M.
Reutlinger
,
F. M.
Boeckler
, and
G.
Schneider
,
PLoS Comput. Biol.
10
,
e1003400
(
2014
).
13.
A. P.
Bartok
,
M. J.
Gillan
,
F. R.
Manby
, and
G.
Csanyi
,
Phys. Rev. B
88
,
054104
(
2013
).
14.
C. M.
Handley
,
G. I.
Hawe
,
D. B.
Kell
, and
P. L. A.
Popelier
,
Phys. Chem. Chem. Phys.
11
,
6365
(
2009
).
15.
M. J.
Mills
and
P. L.
Popelier
,
Comput. Theor. Chem.
975
,
42
(
2011
).
16.
M. J. L.
Mills
,
G. I.
Hawe
,
C. M.
Handley
, and
P. L. A.
Popelier
,
Phys. Chem. Chem. Phys.
15
,
18249
(
2013
).
17.
T. L.
Fletcher
and
P. L.
Popelier
,
Chem. Phys. Lett.
659
,
10
(
2016
).
18.
H. J.
Werner
 et al., molpro, version 2012.1, a package of ab initio programs,
2012
, see http://www.molpro.net.
19.
See http://github.com/SheffieldML/GPy for GPy: A Gaussian Process framework in python, 2012–2015.
20.

This can be obtained from the maximum energy, before applying the energy cutoff over the test data (if available) or training data.

21.
A. C.
Legon
and
A. P.
Suckley
,
J. Chem. Phys.
91
,
4440
(
1989
).
22.
K.
deLange
and
J. R.
Lane
,
J. Chem. Phys.
134
,
034301
(
2011
).
23.
S.
Sheybani-Deloui
,
A. J.
Barclay
,
K. H.
Michaelian
,
A. R. W.
McKellar
, and
N.
Moazzen-Ahmadi
,
J. Chem. Phys.
143
,
121101
(
2015
).
24.
T. L.
Cottrell
,
R. A.
Hamilton
, and
R. P.
Taubinger
,
Trans. Faraday Soc.
52
,
1310
(
1956
).
25.
J.
Brewer
and
G. W.
Vaughn
,
J. Chem. Phys.
50
,
2960
(
1969
).
26.
B.
Mallu
,
G.
Natarajan
, and
D.
Viswanath
,
J. Chem. Thermodyn.
21
,
989
(
1989
).
27.
O.
Kunz
,
R.
Klimeck
,
W.
Wagner
, and
M.
Jaeschke
,
The GERG-2004 Wide-Range Reference Equation of State for Natural Gases
, Fortschr.-Ber. VDI (
VDI-Verlag
,
Düsseldorf
,
2007
).
28.
M. P.
Hodges
,
R. J.
Wheatley
,
G. K.
Schenter
, and
A. H.
Harvey
,
J. Chem. Phys.
120
,
710
(
2004
).
29.
J.
Beck
and
S.
Guillas
,
IAM/ASA J. Uncertainty Quantification
4
,
739
(
2016
).
30.
M. T.
Oakley
and
R. J.
Wheatley
,
J. Chem. Phys.
130
,
034110
(
2009
).
31.
E.
Snelson
and
Z.
Ghahramani
,
Advances in Neural Information Processing Systems 18
(
MIT Press
,
2006
), pp.
1257
1264
.

Supplementary Material

You do not currently have access to this content.