The induced dipole and the classical Drude oscillator represent two major approaches for the explicit inclusion of electronic polarizability into force field-based molecular modeling and simulations. In this work, we explore the equivalency of these two models by comparing condensed phase properties computed using the Drude force field and a multipole and induced dipole (MPID) model. Presented is an approach to map the electrostatic model optimized in the context of the Drude force field onto the MPID model. Condensed phase simulations on water and 15 small model compounds show that without any reparametrization, the MPID model yields properties similar to the Drude force field with both models yielding satisfactory reproduction of a range of experimental values and quantum mechanical data. Our results illustrate that the Drude oscillator model and the point induced dipole model are different representations of essentially the same physical model. However, results indicate the presence of small differences between the use of atomic multipoles and off-center charge sites. Additionally, results on the use of dispersion particle mesh Ewald further support its utility for treating long-range Lennard Jones dispersion contributions in the context of polarizable force fields. The main motivation in demonstrating the transferability of parameters between the Drude and MPID models is that the more than 15 years of development of the Drude polarizable force field can now be used with MPID formalism without the need for dual-thermostat integrators nor self-consistent iterations. This opens up a wide range of new methodological opportunities for polarizable models.

1.
J.
Huang
 et al,
J. Phys. Chem. Lett.
5
,
3144
(
2014
).
2.
G. A.
Cisneros
 et al,
Chem. Rev.
114
,
779
(
2014
).
3.
A.
Albaugh
 et al,
J. Phys. Chem. B
120
,
9811
(
2016
).
4.
J.
Huang
and
A. D.
MacKerell
, Jr.
,
Biophys. J.
107
,
991
(
2014
).
5.
J. A.
Lemkul
,
A.
Savelyev
, and
A. D.
MacKerell
,
J. Phys. Chem. Lett.
5
,
2077
(
2014
).
6.
A.
Savelyev
and
A. D.
MacKerell
,
J. Phys. Chem. Lett.
6
,
212
(
2015
).
7.
M. J.
Schnieders
 et al,
J. Chem. Theory Comput.
8
,
1721
(
2012
).
8.
A.
Warshel
and
M.
Levitt
,
J. Mol. Biol.
103
,
227
(
1976
).
9.
S. W.
Rick
,
S. J.
Stuart
, and
B. J.
Berne
,
J. Chem. Phys.
101
,
6141
(
1994
).
10.
S. W.
Rick
and
B. J.
Berne
,
J. Am. Chem. Soc.
118
,
672
(
1996
).
11.
Y.-P.
Liu
 et al,
J. Chem. Phys.
108
,
4739
(
1998
).
12.
H. A.
Stern
 et al,
J. Chem. Phys.
115
,
2237
(
2001
).
13.
G. A.
Kaminski
 et al,
J. Comput. Chem.
23
,
1515
(
2002
).
14.
S.
Patel
and
C. L.
Brooks
,
J. Comput. Chem.
25
,
1
(
2004
).
15.
S.
Patel
,
A. D.
Mackerell
, and
C. L.
Brooks
,
J. Comput. Chem.
25
,
1504
(
2004
).
16.
W.
Xie
and
J.
Gao
,
J. Chem. Theory Comput.
3
,
1890
(
2007
).
17.
W.
Xie
 et al,
J. Chem. Theory Comput.
3
,
1878
(
2007
).
18.
J. W.
Ponder
 et al,
J. Phys. Chem. B
114
,
2549
(
2010
).
19.
J. A.
Lemkul
 et al,
Chem. Rev.
116
,
4983
(
2016
).
20.
P.
Ren
and
J. W.
Ponder
,
J. Comput. Chem.
23
,
1497
(
2002
).
21.
P.
Ren
and
J. W.
Ponder
,
J. Phys. Chem. B
107
,
5933
(
2003
).
22.
P.
Ren
,
C.
Wu
, and
J. W.
Ponder
,
J. Chem. Theory Comput.
7
,
3143
(
2011
).
23.
Y.
Shi
 et al,
J. Chem. Theory Comput.
9
,
4046
(
2013
).
24.
G.
Lamoureux
,
A. D.
MacKerell
, Jr.
, and
B.
Roux
,
J. Chem. Phys.
119
,
5185
(
2003
).
25.
G.
Lamoureux
and
B.
Roux
,
J. Chem. Phys.
119
,
3025
(
2003
).
26.
G.
Lamoureux
 et al,
Chem. Phys. Lett.
418
,
245
(
2006
).
27.
W.
Yu
 et al,
J. Chem. Phys.
138
,
034508
(
2013
).
28.
P. E. M.
Lopes
 et al,
J. Chem. Theory Comput.
9
,
5430
(
2013
).
29.
J.
Chowdhary
 et al,
J. Phys. Chem. B
117
,
9142
(
2013
).
30.
X.
He
,
P. E.
Lopes
, and
A. D.
Mackerell
, Jr.
,
Biopolymers
99
,
724
(
2013
).
31.
A.
Savelyev
and
A. D.
MacKerell
,
J. Comput. Chem.
35
,
1219
(
2014
).
32.
A.
Savelyev
and
A. D.
MacKerell
,
J. Phys. Chem. B
118
,
6742
(
2014
).
33.
H.
Li
 et al,
J. Phys. Chem. B
119
,
9401
(
2015
).
34.
X.
Peng
 et al,
J. Chem. Theory Comput.
12
,
2973
(
2016
).
35.
A. C.
Simmonett
 et al,
J. Phys. Chem.
140
,
184101
(
2014
).
36.
A. C.
Simmonett
 et al,
J. Phys. Chem.
143
,
074115
(
2015
).
37.
A. C.
Simmonett
 et al,
J. Phys. Chem.
145
,
164101
(
2016
).
38.
C. L.
Wennberg
 et al,
J. Chem. Theory Comput.
11
,
5737
(
2015
).
39.
M.
Tuckerman
,
B. J.
Berne
, and
G. J.
Martyna
,
J. Phys. Chem.
97
,
1990
(
1992
).
40.
L.
Zheng
,
M.
Chen
, and
W.
Yang
,
Proc. Natl. Acad. Sci. U. S. A.
105
,
20227
(
2008
).
41.
M. S.
Gordon
 et al,
Chem. Rev.
112
,
632
(
2012
).
42.
A.
Gaenko
 et al,
J. Chem. Theory Comput.
9
,
222
(
2013
).
43.
J.
Dziedzic
 et al,
J. Phys. Chem.
145
,
124106
(
2016
).
44.
E. G.
Kratz
 et al,
J. Comput. Chem.
37
,
1019
(
2016
).
45.
Z.
Lu
and
Y.
Zhang
,
J. Chem. Theory Comput.
4
,
1237
(
2008
).
46.
S.
Riahi
and
C. N.
Rowley
,
J. Comput. Chem.
35
,
2076
(
2014
).
47.
D. P.
Geerke
 et al,
J. Chem. Theory Comput.
3
,
1499
(
2007
).
48.
E.
Boulanger
and
W.
Thiel
,
J. Chem. Theory Comput.
10
,
1795
(
2014
).
49.
E.
Harder
 et al,
J. Phys. Chem. B
112
,
3509
(
2008
).
50.
B. T.
Thole
,
Chem. Phys.
59
,
341
(
1981
).
51.
H.
Yu
 et al,
J. Chem. Theory Comput.
6
,
774
(
2010
).
52.
C. L.
Wennberg
 et al,
J. Chem. Theory Comput.
9
,
3527
(
2013
).
53.
B. R.
Brooks
 et al,
J. Comput. Chem.
30
,
1545
(
2009
).
54.
S.
Nosé
,
J. Phys. Chem.
81
,
511
(
1984
).
55.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
56.
H. C.
Andersen
,
J. Phys. Chem.
72
,
2384
(
2008
).
57.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
58.
J.-P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
,
J. Comput. Phys.
23
,
327
(
1977
).
59.
L.
Martínez
 et al,
J. Comput. Chem.
30
,
2157
(
2009
).
60.
Y.
Zhang
 et al,
J. Phys. Chem.
103
,
10252
(
1995
).
61.
S. E.
Feller
,
Y.
Zhang
, and
R. W.
Pastor
,
J. Phys. Chem.
103
,
10267
(
1995
).
62.
T. R.
Dyke
,
K. M.
Mack
, and
J. S.
Muenter
,
J. Phys. Chem.
66
,
498
(
1977
).
63.
L. A.
Curtiss
,
D. J.
Frurip
, and
M.
Blander
,
J. Phys. Chem.
71
,
2703
(
1979
).
64.
R. M.
Shields
 et al,
J. Phys. Chem. A
114
,
11725
(
2010
).
65.
S.
Niu
,
M.-L.
Tan
, and
T.
Ichiye
,
J. Phys. Chem.
134
,
134501
(
2011
).
66.
C.
Altona
and
M.
Sundaralingam
,
J. Am. Chem. Soc.
94
,
8205
(
1972
).
67.
A. K.
Soper
,
Chem. Phys.
258
,
121
(
2000
).
68.
A. D.
MacKerell
 et al,
J. Phys. Chem. B
102
,
3586
(
1998
).
69.
A. D.
Mackerell
,
M.
Feig
, and
C. L.
Brooks
,
J. Comput. Chem.
25
,
1400
(
2004
).
70.
O.
Guvench
 et al,
J. Comput. Chem.
29
,
2543
(
2008
).
71.
E. R.
Hatcher
,
O.
Guvench
, and
A. D.
MacKerell
,
J. Chem. Theory Comput.
5
,
1315
(
2009
).
72.
O.
Guvench
 et al,
J. Chem. Theory Comput.
7
,
3162
(
2011
).
73.
C. M.
Baker
,
V. M.
Anisimov
, and
A. D.
MacKerell
,
J. Phys. Chem. B
115
,
580
(
2011
).
74.
M.
Schmollngruber
 et al,
Phys. Chem. Chem. Phys.
17
,
14297
(
2015
).
75.
A. A.
Chialvo
 et al,
J. Phys. Chem. B
119
,
5010
(
2015
).
76.
A.
Li
 et al,
J. Phys. Chem. B
120
,
8668
(
2016
).
77.
H.
Wang
and
W.
Yang
,
J. Phys. Chem.
144
,
224107
(
2016
).
78.
J. A.
Lemkul
and
A. D.
MacKerell
,
J. Phys. Chem. B
120
,
11436
(
2016
).
79.
M.
Devereux
 et al,
J. Chem. Theory Comput.
10
,
4229
(
2014
).
80.
A.
Albaugh
,
O.
Demerdash
, and
T.
Head-Gordon
,
J. Phys. Chem.
143
,
174104
(
2015
).
81.
A.
Albaugh
,
A. M. N.
Niklasson
, and
T.
Head-Gordon
,
J. Phys. Chem. Lett.
8
,
1714
(
2017
).
82.
T. A.
Halgren
,
J. Am. Chem. Soc.
114
,
7827
(
1992
).
83.
X.
Wu
and
B. R.
Brooks
,
Chem. Phys. Lett.
381
,
512
(
2003
).
84.
X.
Wu
and
B. R.
Brooks
,
J. Phys. Chem.
134
,
134108
(
2011
).
85.
X.
Wu
and
B. R.
Brooks
,
J. Phys. Chem.
135
,
204101
(
2011
).

Supplementary Material

You do not currently have access to this content.