The methyl carbocation is ubiquitous in gaseous environments, such as planetary ionospheres, cometary comae, and the interstellar medium, as well as combustion systems and plasma setups for technological applications. Here we report on a joint experimental and theoretical study on the mechanism of the reaction CH3+ + CH3CCCH3 (but-2-yne, also known as dimethylacetylene), by combining guided ion beam mass spectrometry experiments with ab initio calculations of the potential energy hypersurface. Such a reaction is relevant in understanding the chemical evolution of Saturn’s largest satellite, Titan. Two complementary setups have been used: in one case, methyl cations are generated via electron ionization, while in the other case, direct vacuum ultraviolet photoionization with synchrotron radiation of methyl radicals is used to study internal energy effects on the reactivity. Absolute reactive cross sections have been measured as a function of collision energy, and product branching ratios have been derived. The two most abundant products result from electron and hydride transfer, occurring via direct and barrierless mechanisms, while other channels are initiated by the electrophilic addition of the methyl cation to the triple bond of but-2-yne. Among the minor channels, special relevance is placed on the formation of C5H7+, stemming from H2 loss from the addition complex. This is the only observed condensation product with the formation of new C—C bonds, and it might represent a viable pathway for the synthesis of complex organic species in astronomical environments and laboratory plasmas.

1.
G. A.
Olah
,
J. Am. Chem. Soc.
94
,
808
(
1972
).
2.
G. A.
Olah
,
Angew. Chem., Int. Ed. Engl.
34
,
1393
(
1995
).
3.
V. R.
Naidu
,
S.
Ni
, and
J.
Franzén
,
ChemCatChem
7
,
1896
(
2015
).
4.
T.
Yuasa
,
S.
Kadota
,
M.
Tsue
,
M.
Kono
,
H.
Nomura
, and
Y.
Ujiie
,
Proc. Combust. Inst.
29
,
743
(
2002
).
5.
T.
Pedersen
and
R. C.
Brown
,
Combust. Flame
94
,
433
(
1993
).
6.
C.
De Bie
,
B.
Verheyde
,
T.
Martens
,
J.
van Dijk
,
S.
Paulussen
, and
A.
Bogaerts
,
Plasma Processes Polym.
8
,
1033
(
2011
).
7.
C.
De Bie
,
J.
van Dijk
, and
A.
Bogaerts
,
J. Phys. Chem. C
119
,
22331
(
2015
).
8.
R.
Snoeckx
,
R.
Aerts
,
X.
Tu
, and
A.
Bogaerts
,
J. Phys. Chem. C
117
,
4957
(
2013
).
9.
S.
Petrie
and
D. K.
Bohme
,
Mass Spectrom. Rev.
26
,
258
(
2007
).
10.
N.
Indriolo
,
T.
Oka
,
T. R.
Geballe
, and
B. J.
McCall
,
Astrophys. J.
711
,
1338
(
2010
).
11.
M.
Agúndez
and
V.
Wakelam
,
Chem. Rev.
113
,
8710
(
2013
).
12.
D.
McElroy
,
C.
Walsh
,
A. J.
Markwick
,
M. A.
Cordiner
,
K.
Smith
, and
T. J.
Millar
,
Astron. Astrophys.
550
,
A36
(
2013
).
13.
E.
Roueff
,
M.
Gerin
,
D. C.
Lis
,
A.
Wootten
,
N.
Marcelino
,
J.
Cernicharo
, and
B.
Tercero
,
J. Phys. Chem. A
117
,
9959
(
2013
).
14.
15.
V.
Wakelam
,
J.-C.
Loison
,
E.
Herbst
,
B.
Pavone
,
A.
Bergeat
,
K.
Béroff
,
M.
Chabot
,
A.
Faure
,
D.
Galli
,
W. D.
Geppert
,
D.
Gerlich
,
P.
Gratier
,
N.
Harada
,
K. M.
Hickson
,
P.
Honvault
,
S. J.
Klippenstein
,
S. D. L.
Picard
,
G.
Nyman
,
M.
Ruaud
,
S.
Schlemmer
,
I. R.
Sims
,
D.
Talbi
,
J.
Tennyson
, and
R.
Wester
,
Astrophys. J., Suppl. Ser.
217
,
20
(
2015
).
16.
W. D.
Geppert
and
M.
Larsson
,
Chem. Rev.
113
,
8872
(
2013
).
17.
M.
Larsson
,
W. D.
Geppert
, and
G.
Nyman
,
Rep. Prog. Phys.
75
,
066901
(
2012
).
18.
D.
Gerlich
and
G.
Kaefer
,
Astrophys. J.
347
,
849
(
1989
).
19.
M.
Kamińska
,
V.
Zhaunerchyk
,
E.
Vigren
,
M.
Danielsson
,
M.
Hamberg
,
W. D.
Geppert
,
M.
Larsson
,
S.
Rosén
,
R. D.
Thomas
, and
J.
Semaniak
,
Phys. Rev. A
81
,
062701
(
2010
).
20.
N.
Harada
,
E.
Herbst
, and
V.
Wakelam
,
Astrophys. J.
721
,
1570
(
2010
).
21.
M.
Rubin
,
K. C.
Hansen
,
T. I.
Gombosi
,
M. R.
Combi
,
K.
Altwegg
, and
H.
Balsiger
,
Icarus
199
,
505
(
2009
).
22.
Y. H.
Kim
and
J. L.
Fox
,
Icarus
112
,
310
(
1994
).
23.
Y. H.
Kim
,
J. L.
Fox
,
J. H.
Black
, and
J. I.
Moses
,
J. Geophys. Res.: Space Phys.
119
,
384
, doi:10.1002/2013ja019022 (
2014
).
24.
R. H.
Brown
,
J.-P.
Lebreton
, and
J. H.
Waite
,
Titan from Cassini-Huygens
(
Springer
,
Dordrecht, Netherlands
,
2010
).
25.
V.
Vuitton
,
O.
Dutuit
,
M.
Smith
, and
N.
Balucani
, “
Chemistry of titan’s atmosphere
,” in
Titan: Interior, Surface, Atmosphere, and Space Environment
, Cambridge Planetary Science, edited by
I.
Müller-Wodarg
,
C.
Griffith
,
E.
Lellouch
, and
T.
Cravens
(
Cambridge University Press
,
2014
), p.
224
.
26.
J. H.
Waite
, Jr.
,
H.
Niemann
,
R. V.
Yelle
,
W. T.
Kasprzak
,
T. E.
Cravens
,
J. G.
Luhmann
,
R. L.
McNutt
,
W.-H.
Ip
,
D.
Gell
,
V.
De La Haye
,
I.
Müller-Wordag
,
B.
Magee
,
N.
Borggren
,
S.
Ledvina
,
G.
Fletcher
,
E.
Walter
,
R.
Miller
,
S.
Scherer
,
R.
Thorpe
,
J.
Xu
,
B.
Block
, and
K.
Arnett
,
Science
308
,
982
(
2005
).
27.
T. E.
Cravens
,
I. P.
Robertson
,
J. H.
Waite
, Jr.
,
R. V.
Yelle
,
W. T.
Kasprzak
,
C. N.
Keller
,
S. A.
Ledvina
,
H. B.
Niemann
,
J. G.
Luhmann
,
R. L.
McNutt
,
W.-H.
Ip
,
V.
De La Haye
,
I.
Mueller-Wodarg
,
J.-E.
Wahlund
,
V. G.
Anicich
, and
V.
Vuitton
,
Geophys. Res. Lett.
33
,
L07105
, doi:10.1029/2005gl025575 (
2006
).
28.
J. H.
Waite
, Jr.
,
D. T.
Young
,
T. E.
Cravens
,
A. J.
Coates
,
F. J.
Crary
,
B.
Magee
, and
J.
Westlake
,
Science
316
,
870
(
2007
).
29.
V.
Vuitton
,
R. V.
Yelle
, and
M. J.
McEwan
,
Icarus
191
,
722
(
2007
).
30.
B. A.
Magee
,
J. H.
Waite
,
K. E.
Mandt
,
J.
Westlake
,
J.
Bell
, and
D. A.
Gell
,
Planet. Space Sci.
57
,
1895
(
2009
).
31.
J.
Cui
,
R. V.
Yelle
,
V.
Vuitton
,
J. W.
Waite
, Jr.
,
W. T.
Kasprzak
,
D. A.
Gell
,
H. B.
Niemann
,
I. C. F.
Müller-Wodarg
,
N.
Borggren
,
G. G.
Fletcher
,
E. L.
Patrick
,
E.
Raaen
, and
B. A.
Magee
,
Icarus
200
,
581
(
2009
).
32.
G.
Tinetti
,
Philos. Trans. R. Soc., A
372
,
20130077
(
2014
).
33.
T. S.
Barman
,
Q. M.
Konopacky
,
B.
Macintosh
, and
C.
Marois
,
Astrophys. J.
804
,
61
(
2015
).
34.
O.
Venot
,
E.
Hébrard
,
M.
Agúndez
,
L.
Decin
, and
R.
Bounaceur
,
Astron. Astrophys.
577
,
A33
(
2015
).
35.
K. J.
Zahnle
and
M. S.
Marley
,
Astrophys. J.
797
,
41
(
2014
).
36.
R.
Hu
and
S.
Seager
,
Astrophys. J.
784
,
63
(
2014
).
37.
U.
Marboeuf
,
A.
Thiabaud
,
Y.
Alibert
,
N.
Cabral
, and
W.
Benz
,
Astron. Astrophys.
570
,
A35
(
2014
).
38.
C.
Bilger
,
P.
Rimmer
, and
Ch.
Helling
,
Mon. Not. R. Astron. Soc.
435
,
1888
(
2013
).
39.
M. R.
Swain
,
P.
Deroo
,
C. A.
Griffith
,
G.
Tinetti
,
A.
Thatte
,
G.
Vasisht
,
P.
Chen
,
J.
Bouwman
,
I. J.
Crossfield
,
D.
Angerhausen
,
C.
Afonso
, and
T.
Henning
,
Nature
463
,
637
(
2010
).
40.
M. R.
Line
,
M. C.
Liang
, and
Y. L.
Yung
,
Astrophys. J.
717
,
496
(
2010
).
41.
K. E.
Mandt
,
D. A.
Gell
,
M.
Perry
,
J. H.
Waite
, Jr.
,
F. A.
Crary
,
D.
Young
,
B. A.
Magee
,
J. H.
Westlake
,
T.
Cravens
,
W.
Kasprzak
,
G.
Miller
,
J.-E.
Wahlund
,
K.
Ågren
,
N. J. T.
Edberg
,
A. N.
Heays
,
B. R.
Lewis
,
S. T.
Gibson
,
V.
de la Haye
, and
M.-C.
Liang
,
J. Geophys. Res.: Planets
117
,
E10006
, doi:10.1029/2012je004139 (
2012
).
42.
T.
Cravens
,
R.
Yelle
,
J.
Wahlund
,
D.
Shemansky
, and
A.
Nagy
, “
Composition and structure of the ionosphere and thermosphere
,” in
Titan From Cassini-Huygens
(
Springer
,
The Netherlands
,
2010
), pp.
259
295
.
43.
V.
Vuitton
,
R. V.
Yelle
, and
P.
Lavvas
,
Philos. Trans. R. Soc., A
367
,
729
(
2009
).
44.
O.
Dutuit
,
N.
Carrasco
,
R.
Thissen
,
V.
Vuitton
,
C.
Alcaraz
,
P.
Pernot
,
N.
Balucani
,
P.
Casavecchia
,
A.
Canosa
,
S.
Le Picard
,
J.-C.
Loison
,
Z.
Herman
,
J.
Žabka
,
D.
Ascenzi
,
P.
Tosi
,
P.
Franceschi
,
S. D.
Price
, and
P.
Lavvas
,
Astrophys. J., Suppl. Ser.
204
,
20
(
2013
).
45.
V. D. L.
Haye
,
J. H.
W
aite
, Jr.
,
T. E.
Cravens
,
I. P.
Robertson
, and
S.
Lebonnois
,
Icarus
197
,
110
(
2008
).
46.
A.
Ali
,
E. C.
Sittler
, Jr.
,
D.
Chornay
,
B.
Rowe
, and
C.
Puzzarini
,
Planet. Space Sci.
87
,
96
(
2013
).
47.
J. J.
Fisher
,
G. K.
Koyanagi
, and
T. B.
McMahon
,
Int. J. Mass Spectrom.
195
,
491
(
2000
).
48.
V. G.
Anicich
, “
An index of the literature for bimolecular gas phase cation-molecule reaction kinetics
,” Report JPL-Publ-03-19,
2003
.
49.
S.
Mark
,
C.
Schellhammer
,
G.
Niedner-Schatteburg
, and
D.
Gerlich
,
J. Phys. Chem.
99
,
15587
(
1995
).
50.
C.
Berg
,
W.
Wachter
,
T.
Schindler
,
C.
Kronseder
,
G.
Niedner-Schatteburg
,
V. E.
Bondybey
, and
Z.
Herman
,
Chem. Phys. Lett.
216
,
465
(
1993
).
51.
M.
Fárník
,
Z.
Dolejšek
,
Z.
Herman
, and
V. E.
Bondybey
,
Chem. Phys. Lett.
216
,
458
(
1993
).
52.
J. K.
Kim
,
V. G.
Anicich
, and
W. T.
Huntress
, Jr.
,
J. Phys. Chem.
81
,
1798
(
1977
).
53.
V. G.
Anicich
,
W. T.
Huntress
, Jr.
, and
M. J.
McEwan
,
J. Phys. Chem.
90
,
2446
(
1986
).
54.
A.
Fiaux
,
D. L.
Smith
, and
J. H.
Futrell
,
Int. J. Mass Spectrom. Ion Phys.
25
,
281
(
1977
).
55.
D. M.
Sonnenfroh
and
J. M.
Farrar
,
J. Chem. Phys.
85
,
7167
(
1986
).
56.
R.
López
,
J. A.
Sordo
,
T. L.
Sordo
, and
P.
von Ragué Schleyer
,
J. Comput. Chem.
17
,
905
(
1996
).
57.
A.
Lopes
,
C.
Romanzin
,
B. K.
Cunha de Miranda
,
I.
Zymak
,
M.
Žabka
,
J.
Polášek
,
A.
Cernuto
,
D.
Ascenzi
, and
C.
Alcaraz
Effects of collision energy and vibrational excitation of CH3+ cations on its reactivity with hydrocarbons: Methane as reagent partner
” (unpublished).
58.
C.
Alcaraz
,
C.
Nicolas
,
R.
Thissen
,
J.
Žabka
, and
O.
Dutuit
,
J. Phys. Chem. A
108
,
9998
(
2004
).
59.
P.
Fathi
,
W. D.
Geppert
,
A.
Kaiser
, and
D.
Ascenzi
,
Mol. Astrophys.
2
,
1
(
2016
).
60.
D.
Ascenzi
,
N.
Cont
,
G.
Guella
,
P.
Franceschi
, and
P.
Tosi
,
J. Phys. Chem. A
111
,
12513
(
2007
).
61.
P.
Franceschi
,
L.
Penasa
,
D.
Ascenzi
,
D.
Bassi
,
M.
Scotoni
, and
P.
Tosi
,
Int. J. Mass Spectrom.
265
,
224
(
2007
).
62.
K. M.
Ervin
and
P. B.
Armentrout
,
J. Chem. Phys.
83
,
166
(
1985
).
63.
B.
Cunha de Miranda
,
C.
Romanzin
,
S.
Chefdeville
,
V.
Vuitton
,
J.
Žabka
,
M.
Polášek
, and
C.
Alcaraz
,
J. Phys. Chem. A
119
,
6082
(
2015
).
64.
B. K.
Cunha de Miranda
,
C.
Alcaraz
,
M.
Elhanine
,
B.
Noller
,
P.
Hemberger
,
I.
Fischer
,
G. A.
Garcia
,
H.
Soldi-Lose
,
B.
Gans
,
L. A.
Vieira Mendes
,
S.
Boyé-Péronne
,
S.
Douin
,
J.
Žabka
, and
P.
Botschwina
,
J. Phys. Chem. A
114
,
4818
(
2010
).
65.
L.
Nahon
,
N.
de Oliveira
,
G. A.
Garcia
,
J.-F.
Gil
,
B.
Pilette
,
O.
Marcouillé
,
B.
Lagarde
, and
F.
Polack
,
J. Synchrotron Radiat.
19
,
508
(
2012
).
66.
B.
Mercier
,
M.
Compin
,
C.
Prevost
,
G.
Bellec
,
R.
Thissen
,
O.
Dutuit
, and
L.
Nahon
,
J. Vac. Sci. Technol., A
18
,
2533
(
2000
).
67.
A. M.
Schulenburg
,
C.
Alcaraz
,
G.
Grassi
, and
F.
Merkt
,
J. Chem. Phys.
125
,
104310
(
2006
).
68.
A.
Kramida
,
Y.
Ralchenko
,
J.
Reader
, and
NIST ASD Team
, NIST Atomic Spectra Database (ver. 5.3),
2016
.
69.
J.
Roithová
,
D.
Schröder
,
J.
Loos
,
H.
Schwarz
,
H.-C.
Jankowiak
,
R.
Berger
,
R.
Thissen
, and
O.
Dutuit
,
J. Chem. Phys.
122
,
094306
(
2005
).
70.
R.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
John Wiley and Sons, Inc.
,
1989
), Vol. 3, p.
333
.
71.
Y.
Zhao
and
D. G.
Truhlar
,
Theor. Chem. Acc.
120
,
215
(
2007
).
72.
Y.
Zhao
and
D. G.
Truhlar
,
J. Phys. Chem. A
112
,
1095
(
2008
).
73.
Y.
Zhao
and
D. G.
Truhlar
,
Acc. Chem. Res.
41
,
157
(
2008
).
74.
Y.
Zhao
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
4
,
1849
(
2008
).
75.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
76.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
98
,
1358
(
1993
).
77.
J.
Li
,
A. B.
Pacheco
,
K.
Raghavachari
, and
S. S.
Iyengar
,
Phys. Chem. Chem. Phys.
18
,
29395
(
2016
).
78.
S.
Kozuch
,
Phys. Chem. Chem. Phys.
17
,
16688
(
2015
).
79.
R.
Kalescky
,
W.
Zou
,
E.
Kraka
, and
D.
Cremer
,
J. Phys. Chem. A
118
,
1948
(
2014
).
80.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
).
81.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
, and
J.
Olsen
,
Chem. Phys. Lett.
302
,
437
(
1999
).
82.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, gaussian 16, Revision A.03,
Gaussian, Inc.
,
Wallingford CT
,
2016
.
83.
G.
Schaftenaar
and
J. H.
Noordik
,
J. Comput.-Aided Mol. Des.
14
,
123
(
2000
).
84.
J.
Holmes
,
C.
Aubry
, and
P.
Mayer
,
Assigning Structures to Ions in Mass Spectrometry
(
CRC Press
,
2006
).
85.
NIST Chemistry WebBook, NIST standard reference Database, Number 69,
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2015
.
86.
A.
Cunje
,
C. F.
Rodriquez
,
M. H.
Lien
, and
A. C.
Hopkinson
,
J. Org. Chem.
61
,
5212
(
1996
).
87.
B.
Ruscic
, Active Thermochemical Tables (ATcT) values based on ver. 1.118 of the Thermochemical Network,
2015
.
88.
S. T.
Park
,
S. K.
Kim
, and
M. S.
Kim
,
J. Chem. Phys.
114
,
5568
(
2001
).
89.
T.
Baer
,
J. Am. Chem. Soc.
102
,
2482
(
1980
).
90.
M.
Polášek
,
E.-L.
Zins
,
C.
Alcaraz
,
J.
Žabka
,
V.
Křížová
,
L.
Giacomozzi
,
P.
Tosi
, and
D.
Ascenzi
,
J. Phys. Chem. A
120
,
5041
(
2016
).
91.
C. J.
Shaffer
,
D.
Schröder
,
J.
Roithová
,
E.-L.
Zins
,
C.
Alcaraz
,
J.
Žabka
,
M.
Polášek
, and
D.
Ascenzi
,
Int. J. Mass Spectrom.
336
,
17
(
2013
).
92.
C. J.
Shaffer
,
D.
Schröder
,
C.
Alcaraz
,
J.
Žabka
, and
E.-L.
Zins
,
ChemPhysChem
13
,
2688
(
2012
).
93.
C.
Shaffer
,
D.
Schröder
,
E.-L.
Zins
,
C.
Alcaraz
,
J.
Žabka
, and
J.
Roithová
,
Chem. Phys. Lett.
534
,
8
(
2012
).
94.
E.-L.
Zins
,
P.
Milko
,
D.
Schröder
,
J.
Aysina
,
D.
Ascenzi
,
J.
Žabka
,
C.
Alcaraz
,
S. D.
Price
, and
J.
Roithová
,
Chem. - Eur. J.
17
,
4012
(
2011
).
95.
D.
Ascenzi
,
J.
Aysina
,
E.-L.
Zins
,
D.
Schröder
,
J.
Žabka
,
C.
Alcaraz
,
S. D.
Price
, and
J.
Roithová
,
Phys. Chem. Chem. Phys.
13
,
18330
(
2011
).
96.
D.
Ascenzi
,
J.
Roithová
,
D.
Schröder
,
E.-L.
Zins
, and
C.
Alcaraz
,
J. Phys. Chem. A
113
,
11204
(
2009
).
97.
R.
Candori
,
S.
Cavalli
,
F.
Pirani
,
A.
Volpi
,
D.
Cappelletti
,
P.
Tosi
, and
D.
Bassi
,
J. Chem. Phys.
115
,
8888
(
2001
).
98.

They took into account 14 different isomers and the transition structures for their interconversions. The most stable isomer was a methylcyclopropenyl cation and the energy difference between buta-1,3-dien-2-yl (4) and but-2-yn-1yl cation (3) was 10.0 and 5.4 kcal mol−1 at HF/6–31G(d,p) and MP2/6–311G(d,p), respectively. In this work, the difference is 6.5 kcal mol−1, which is consistent with their results.

99.
L.
Radom
,
P. C.
Hariharan
,
J. A.
Pople
, and
P. v. R.
Schleyer
,
J. Am. Chem. Soc.
98
,
10
(
1976
).
100.
W.-K.
Li
and
N. V.
Riggs
,
J. Mol. Struct.: THEOCHEM
257
,
189
(
1992
).
101.
In the CH3CCH case, charge exchange remains endothermic by about 0.5 eV, while hydride transfer leading to CH4 plus CH2CCH+ (propargyl cation) is exothermic by about 1.9 eV.

Supplementary Material

You do not currently have access to this content.