Nearly 20 years ago, transition path sampling (TPS) emerged as an alternative method to free energy based approaches for the study of rare events such as nucleation, protein folding, chemical reactions, and phase transitions. TPS effectively performs Monte Carlo simulations with relatively short molecular dynamics trajectories, with the advantage of not having to alter the actual potential energy surface nor the underlying physical dynamics. Although the TPS approach also introduced a methodology to compute reaction rates, this approach was for a long time considered theoretically attractive, providing the exact same results as extensively long molecular dynamics simulations, but still expensive for most relevant applications. With the increase of computer power and improvements in the algorithmic methodology, quantitative path sampling is finding applications in more and more areas of research. In particular, the transition interface sampling (TIS) and the replica exchange TIS (RETIS) algorithms have, in turn, improved the efficiency of quantitative path sampling significantly, while maintaining the exact nature of the approach. Also, open-source software packages are making these methods, for which implementation is not straightforward, now available for a wider group of users. In addition, a blooming development takes place regarding both applications and algorithmic refinements. Therefore, it is timely to explore the wide panorama of the new developments in this field. This is the aim of this article, which focuses on the most efficient exact path sampling approach, RETIS, as well as its recent applications, extensions, and variations.

2.
F.
Jeltsch
 et al.,
Proc. R. Soc. B
264
,
495
(
1997
).
3.
B.
Peters
,
Reaction Rate Theory and Rare Events
(
Elsevier
,
Amsterdam, The Netherlands
,
2017
).
4.
V.
Tsoukalaa
 et al.,
Oceanologia
58
,
71
(
2016
).
5.
P.
Embrechts
,
C.
Klüppelberg
, and
T.
Mikosch
,
Modelling Extremal Events: For Insurance and Finance
(
Springer
,
Dordrecht, London
,
1997
), Vol. 33.
6.
A.
Clauset
and
R.
Woodard
,
Ann. Appl. Stat.
7
,
1838
(
2013
).
7.
D.
Kashchiev
,
Nucleation: Basic Theory With Applications
(
Butterworth Heinemann
,
Burlington, MA, USA
,
2003
), pp.
3
16
.
8.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulations From Algorithms to Applications
(
Academic Press
,
San Diego, California, USA
,
2002
).
9.
P. G.
Bolhuis
,
C.
Dellago
, and
D.
Chandler
,
Faraday Discussions
110
,
421
436
(
1998
).
10.
P. G.
Bolhuis
and
C.
Dellago
,
Reviews in Computational Chemistry
(
John Wiley & Sons, Inc.
,
Hoboken, NJ, USA
,
2010
), pp.
111
210
.
11.
T.
van Erp
,
Adv. Chem. Phys.
151
,
27
(
2012
).
12.
G.
Torrie
and
J.
Valleau
,
J. Comput. Phys.
23
,
187
(
1977
).
13.
E.
Darve
and
A.
Pohorille
,
J. Chem. Phys.
115
,
9169
(
2001
).
14.
G. D.
Rodriguez
,
E.
Darve
, and
A.
Pohorille
,
J. Chem. Phys.
120
,
3563
(
2004
).
15.
L.
Mones
,
N.
Bernstein
, and
G.
Csányi
,
J. Chem. Theory Comput.
12
,
5100
(
2016
).
16.
D. E.
Shaw
 et al.,
Science
330
,
341
(
2010
).
17.
R. G.
Mullen
,
J.-E.
Shea
, and
B.
Peters
,
J. Chem. Phys.
140
,
041104
(
2014
).
18.
D.
Moroni
,
P.
Bolhuis
, and
T.
van Erp
,
J. Chem. Phys.
120
,
4055
(
2003
).
19.
A. K.
Faradjian
and
R.
Elber
,
J. Chem. Phys.
120
,
10880
(
2004
).
20.
D.
Moroni
,
T. S.
van Erp
, and
P. G.
Bolhuis
,
Phys. Rev. E
71
,
056709
(
2005
).
21.
P.
Majek
and
R.
Elber
,
J. Chem. Theory Comput.
6
,
1805
(
2010
).
22.
E.
Vanden-Eijnden
,
M.
Venturoli
,
G.
Ciccotti
, and
R.
Elber
,
J. Chem. Phys.
129
,
174102
(
2008
).
23.
C.
Dellago
,
P. G.
Bolhuis
,
F. S.
Csajka
, and
D.
Chandler
,
J. Comput. Phys.
108
,
1964
(
1998
).
24.
P. G.
Bolhuis
,
C.
Dellago
,
P. L.
Geissler
, and
D.
Chandler
,
J. Phys.-Conden. Mat.
12
(
8A
),
A147
A152
(
2000
).
25.
C.
Dellago
,
P. G.
Bolhuis
, and
D.
Chandler
,
J. Chem. Phys.
110
,
6617
(
1999
).
26.
T.
van Erp
,
D.
Moroni
, and
P.
Bolhuis
,
J. Chem. Phys.
118
,
7762
(
2003
).
27.
28.
P. G.
Bolhuis
,
J. Chem. Phys.
129
,
114108
(
2008
).
29.
T. E.
Booth
and
J. S.
Hendricks
,
Nucl. Technol.-Fusion
5
,
90
(
1984
).
30.
P.
Melnik-Melnikov
and
E.
Dekhtyaruk
,
Probab. Eng. Mech.
15
,
125
(
2000
).
31.
M.
Villenaltamirano
and
J.
Villenaltamirano
, in
Queueing, Performance and Control in Atm North-Holland Studies in Telecommunication
, edited by
J. W.
Cohen
and
C. D.
Pack
(
Elsevier Science Publisher B. V.
,
Amsterdam
,
1991
), Vol. 15, pp.
71
76
, 13th International Teletraffic Congress (ITC-13), Copenhagen, Denmark, 19-26 June 1991.
32.
H.
Jonsson
,
Proc. Natl. Acad. Sci. U. S. A.
108
,
944
(
2011
).
33.
E.
Wigner
,
Trans. Faraday Soc.
34
,
29
(
1938
).
34.
J.
Keck
,
Discuss. Faraday Soc.
33
,
173
(
1962
).
35.
H.
Eyring
,
J. Chem. Phys.
3
,
107
(
1935
).
36.
C. H.
Bennett
,
ACS Symp. Ser.
46
,
63
(
1977
).
37.
D.
Chandler
,
J. Chem. Phys.
68
,
2959
(
1978
).
38.
C.
Dellago
,
P.
Bolhuis
, and
D.
Chandler
,
J. Chem. Phys.
108
,
9236
(
1998
).
39.
D. W.
Swenson
and
P. G.
Bolhuis
,
J. Chem. Phys.
141
,
044101
(
2014
).
40.
T.
Dauxois
,
M.
Peyrard
, and
A. R.
Bishop
,
Phys. Rev. E
47
,
R44
(
1993
).
41.
T. J. H.
Vlugt
, Ph.D. thesis,
Universiteit van Amsterdam
,
2000
.
42.
G.
Henkelman
and
H.
Jonsson
,
J. Chem. Phys.
113
,
9978
(
2000
).
43.
A.
Lervik
,
E.
Riccardi
, and
T. S.
van Erp
,
J. Comput. Chem.
38
(
28
),
2439
2451
(
2017
).
44.
PyRETIS: rare events in Python, www.pyretis.org, 2017.
45.
OpenPathSampling: A Python library to facilitate path sampling algorithms, openpathsampling.org, 2017.
46.
W.
Lechner
,
C.
Dellago
, and
P. G.
Bolhuis
,
J. Chem. Phys.
135
,
154110
(
2011
).
47.
G.
Menzl
 et al.,
Proc. Natl. Acad. Sci. U. S. A.
113
,
13582
(
2016
).
48.
W.-N.
Du
and
P. G.
Bolhuis
,
J. Chem. Phys.
139
,
044105
(
2013
).
49.
W.
Du
and
P. G.
Bolhuis
,
Biophys. J.
108
,
368
(
2015
).
50.
W.
Du
and
P. G.
Bolhuis
,
J. Chem. Phys.
140
,
195102
(
2014
).
51.
S.
Saroukhani
 et al.,
J. Mech. Phys. Solids
90
,
203
(
2016
).
52.
T. S.
van Erp
,
M.
Moqadam
,
E.
Riccardi
, and
A.
Lervik
,
J. Chem. Theory Comput.
12
,
5398
(
2016
).
53.
M.
Moqadam
 et al.,
Phys. Chem. Chem. Phys.
19
,
13361
(
2017
).
54.
M.
Moqadam
 et al.,
J. Chem. Phys.
143
,
184113
(
2015
).
55.
T. S.
van Erp
,
J. Chem. Phys.
125
,
174106
(
2006
).
56.
P. G.
Bolhuis
,
D.
Chandler
,
C.
Dellago
, and
P.
Geissler
,
Annu. Rev. Phys. Chem.
53
,
291
(
2002
).
57.
P. L.
Geissler
,
C.
Dellago
, and
D.
Chandler
,
J. Phys. Chem. B
103
,
3706
(
1999
).
58.
R. G.
Mullen
,
J.-E.
Shea
, and
B.
Peters
,
J. Chem. Theory Comput.
10
,
659
(
2014
).
59.
J.
Juraszek
,
G.
Saladino
,
T. S.
van Erp
, and
F. L.
Gervasio
,
Phys. Rev. Lett.
110
,
108106
(
2013
).
60.
K. V.
Klenin
,
J. Chem. Phys.
141
,
074103
(
2014
).
61.
E.
Riccardi
,
O.
Dahlen
, and
T. S.
van Erp
,
J. Phys. Chem. Lett.
8
,
4456
(
2017
).
62.
M.
Gruenwald
,
C.
Dellago
, and
P. L.
Geissler
,
J. Chem. Phys.
129
,
194101
(
2008
).
63.
R. G.
Mullen
,
J. E.
Shea
, and
B.
Peters
,
J. Chem. Theory Comput.
11
,
2421
(
2015
).
64.
C. N.
Rowley
and
T. K.
Woo
,
J. Chem. Phys.
131
,
234102
(
2009
).
65.
P. G.
Bolhuis
,
J. Phys.: Condens. Matter
15
,
S113
(
2003
).
66.
Z. F.
Brotzakis
and
P. G.
Bolhuis
,
J. Chem. Phys.
145
,
164112
(
2016
).
67.
C.
Dellago
,
P. G.
Bolhuis
, and
P. L.
Geissler
,
Adv. Chem. Phys.
123
,
1
(
2002
).
68.
B.
Peters
and
B. L.
Trout
,
J. Chem. Phys.
125
,
054108
(
2006
).
69.
B.
Peters
,
G. T.
Beckham
, and
B. L.
Trout
,
J. Chem. Phys.
127
,
034109
(
2007
).
70.
R.
Best
and
G.
Hummer
,
Proc. Natl. Acad. Sci. U. S. A.
102
,
6732
(
2005
).
71.
E.
Weinan
,
W.
Ren
, and
E.
Vanden-Eijnden
,
Chem. Phys. Lett.
413
,
242
(
2005
).
72.
P. G.
Bolhuis
and
W.
Lechner
,
J. Stat. Phys.
145
,
841
(
2011
).
73.
J.
Rogal
and
P. G.
Bolhuis
,
J. Chem. Phys.
133
,
034101
(
2010
).
74.
W.
Lechner
 et al.,
J. Chem. Phys.
133
,
174110
(
2010
).
75.
A.
Warshel
and
M.
Levitt
,
J. Mol. Biol.
103
,
227
(
1976
).
76.
A.
Lervik
and
T. S.
van Erp
,
J. Chem. Theory Comput.
11
,
2440
(
2015
).
77.
J.
Juraszek
,
J.
Vreede
, and
P. G.
Bolhuis
,
Chem. Phys.
396
,
30
44
(
2012
).
78.
J.
Rogal
and
P. G.
Bolhuis
,
J. Chem. Phys.
129
,
224107
(
2008
).
79.
S.
Park
and
V. S.
Pande
,
J. Chem. Phys.
124
,
054118
(
2006
).
80.
F.
Noé
,
I.
Horenko
,
C.
Schütte
, and
J. C.
Smith
,
J. Chem. Phys.
126
,
155102
(
2007
).
81.
J. D.
Chodera
 et al.,
J. Chem. Phys.
126
,
155101
(
2007
).
82.
J. H.
Prinz
 et al.,
J. Chem. Phys.
134
,
174105
(
2011
).
83.
F.
Wang
and
D. P.
Landau
,
Phys. Rev. Lett.
86
,
2050
(
2001
).
84.
F.
Wang
and
D. P.
Landau
,
Phys. Rev. E
64
,
056101
(
2001
).
85.
W. N.
Du
,
K. A.
Marino
, and
P. G.
Bolhuis
,
J. Chem. Phys.
135
,
145102
(
2011
).
86.
E.
Marinari
and
G.
Parisi
,
Europhys. Lett.
19
,
451
(
1992
).
87.
M.
Hagen
 et al.,
J. Phys. Chem. B
111
,
1416
(
2007
).
88.
A. C.
Newton
,
J.
Groenewold
,
W. K.
Kegel
, and
P. G.
Bolhuis
,
Proc. Nat. Acad. Sci. U. S. A.
112
,
15308
(
2015
).
89.
A. C.
Newton
,
J.
Groenewold
,
W. K.
Kegel
, and
P. G.
Bolhuis
,
J. Chem. Phys.
146
(
23
),
234901
(
2017
).
You do not currently have access to this content.