Non-equilibrium Markov State Modeling (MSM) has recently been proposed by Pellegrini et al. [Phys. Rev. E 94, 053001 (2016)] as a possible route to construct a physical theory of sliding friction from a long steady state atomistic simulation: the approach builds a small set of collective variables, which obey a transition-matrix-based equation of motion, faithfully describing the slow motions of the system. A crucial question is whether this approach can be extended from the original 1D small size demo to larger and more realistic size systems, without an inordinate increase of the number and complexity of the collective variables. Here we present a direct application of the MSM scheme to the sliding of an island made of over 1000 harmonically bound particles over a 2D periodic potential. Based on a totally unprejudiced phase space metric and without requiring any special doctoring, we find that here too the scheme allows extracting a very small number of slow variables, necessary and sufficient to describe the dynamics of island sliding.

1.
A.
Vanossi
,
N.
Manini
,
M.
Urbakh
,
S.
Zapperi
, and
E.
Tosatti
,
Rev. Mod. Phys.
85
,
529
(
2013
).
2.
F.
Pellegrini
,
F. P.
Landes
,
A.
Laio
,
S.
Prestipino
, and
E.
Tosatti
,
Phys. Rev. E
94
,
053001
(
2016
).
3.
F.
Noé
,
C.
Schütte
,
E.
Vanden-Eijnden
,
L.
Reich
, and
T. R.
Weikl
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
19011
(
2009
).
4.
C. R.
Schwantes
,
R. T.
McGibbon
, and
V. S.
Pande
,
J. Chem. Phys.
141
,
090901
(
2014
).
5.
F.
Noé
and
F.
Nüske
,
Multiscale Model. Simul.
11
,
635
(
2013
).
6.
G. R.
Bowman
,
V. S.
Pande
, and
F.
Noé
,
An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation
(
Springer
,
2014
).
7.
C.
Schütte
and
M.
Sarich
,
Eur. Phys. J. Spec. Top.
224
,
2445
(
2015
).
8.
Y. I.
Frenkel
and
T. A.
Kontorova
,
Phys. Z. Sowietunion
13
,
1
(
1938
).
9.
G.
Pérez-Hernández
,
F.
Paul
,
T.
Giorgino
,
G.
De Fabritiis
, and
F.
Noé
,
J. Chem. Phys.
139
,
015102
(
2013
).
10.
P.
Deuflhard
and
M.
Weber
,
Linear Algebra Appl.
398
,
161
(
2005
).
11.
M.
Weber
and
S.
Kube
,
Lect. Notes Comput. Sci.
3695
,
57
(
2005
).
12.
J.-H.
Prinz
,
H.
Wu
,
M.
Sarich
,
B.
Keller
,
M.
Senne
,
M.
Held
,
J. D.
Chodera
,
C.
Schütte
, and
F.
Noé
,
J. Chem. Phys.
134
,
174105
(
2011
).
13.
A.
Rodriguez
and
A.
Laio
,
Science
344
,
1492
(
2014
).
14.
O. M.
Braun
and
Y. S.
Kivshar
,
Phys. Rep.
306
,
1
(
1998
).
15.
N.
Varini
,
A.
Vanossi
,
R.
Guerra
,
D.
Mandelli
,
R.
Capozza
, and
E.
Tosatti
,
Nanoscale
7
,
2093
(
2015
).
16.
C.
Schütte
,
F.
Noé
,
J.
Lu
,
M.
Sarich
, and
E.
Vanden-Eijnden
,
J. Chem. Phys.
134
,
204105
(
2011
).
You do not currently have access to this content.