Understanding the dynamics of complex systems requires the investigation of their energy landscape. In particular, the flow of probability on such landscapes is a central feature in visualizing the time evolution of complex systems. To obtain such flows, and the concomitant stable states of the systems and the generalized barriers among them, the threshold algorithm has been developed. Here, we describe the methodology of this approach starting from the fundamental concepts in complex energy landscapes and present recent new developments, the threshold-minimization algorithm and the molecular dynamics threshold algorithm. For applications of these new algorithms, we draw on landscape studies of three disaccharide molecules: lactose, maltose, and sucrose.

1.
I.
Gutzow
and
J.
Schmelzer
,
The Vitreous State
(
Springer
,
Berlin
,
1995
).
2.
C. A.
Angell
,
Y.
Yue
,
L.-M.
Wang
,
J. R. D.
Copley
,
S.
Borick
, and
S.
Mossa
,
J. Phys.: Condens. Matter
15
,
S1051
(
2003
).
3.
P.
Svedlindh
,
P.
Granberg
,
P.
Nordblad
,
L.
Lundgren
, and
H.
Chen
,
Phys. Rev. B
35
,
268
(
1987
).
4.
K. H.
Fischer
and
J. A.
Hertz
,
Spin Glasses
(
Cambridge University Press
,
Cambridge
,
1991
).
5.
Spin Glasses and Random Fields
, edited by
A. P.
Young
(
World Scientific
,
Singapore
,
1998
).
6.
C. A.
Angell
,
J. Non-Cryst. Solids
131–133
,
13
(
1991
).
7.
C. M.
Roland
,
P. G.
Santangelo
, and
K. L.
Ngai
,
J. Chem. Phys.
111
,
5593
(
1999
).
8.
M.
Utz
,
P. G.
Debenedetti
, and
F. H.
Stillinger
,
Phys. Rev. Lett.
84
,
1471
(
2000
).
9.
J. C.
Schön
and
M.
Jansen
,
Z. Kristallogr.
216
,
307
(
2001
).
10.
J.
Skolnick
,
A.
Kolinski
,
C. L.
Brooks
 III
,
A.
Godzik
, and
A.
Rey
,
Curr. Biol.
3
,
414
(
1993
).
11.
J. M.
Troyer
and
F. E.
Cohen
,
Proteins: Struct., Funct., Genet.
23
,
97
(
1995
).
12.
D. J.
Wales
,
Energy Landscapes with Applications to Clusters, Biomolecules, and Glasses
(
Cambridge University Press
,
2004
).
13.
D. J.
Wales
,
J. P. K.
Doye
,
M. A.
Miller
,
P. N.
Mortenson
, and
T. R.
Walsh
, in
Advances in Chemical Physics
, Volume 115, edited by
I.
Prigogine
and
S. A.
Rice
(
Wiley
,
New York
,
2000
), pp.
1
111
.
14.
J. C.
Schön
and
M.
Jansen
,
Angew. Chem., Int. Ed. Engl.
35
,
1286
(
1996
).
15.
J. C.
Schön
,
C.
Oligschleger
, and
J.
Cortes
,
Z. Naturforsch. B
71
,
351
(
2016
).
16.
V.
Černý
,
J. Optim. Theory Appl.
45
,
41
(
1985
).
17.
S.
Kirkpatrick
and
G.
Toulouse
,
J. Phys.
46
,
1277
(
1985
).
18.
P.
Salamon
,
P.
Sibani
, and
R.
Frost
,
Facts, Conjectures, and Improvements for Simulated Annealing
(
SIAM Monographs
,
Philadelphia
,
2002
).
19.
G.
Adam
and
J. H.
Gibbs
,
J. Chem. Phys.
43
,
139
(
1965
).
20.
L.
Struik
,
Physical Aging in Amorphous Polymers and Other Materials
(
Elsevier Science Ltd.
,
New York
,
1978
).
21.
L.
Lundgren
,
P.
Svedlindh
,
P.
Nordblad
, and
O.
Beckman
,
Phys. Rev. Lett.
51
,
911
(
1983
).
22.
S. A.
Brawer
,
J. Chem. Phys.
81
,
954
(
1984
).
23.
M.
Alba
,
M.
Ocio
, and
J.
Hammann
,
Europhys. Lett.
2
,
45
(
1986
).
24.
R. F.
Grote
and
J. T.
Hynes
,
J. Chem. Phys.
73
,
2715
(
1980
).
25.
P.
Sibani
and
K. H.
Hoffmann
,
Europhys. Lett.
4
,
967
(
1987
).
26.
P.
Sibani
and
K. H.
Hoffmann
,
Phys. Rev. Lett.
63
,
2853
(
1989
).
27.
J. C.
Schön
, in
Proceedings of RIGI-workshop
, edited by
J.
Schreuer
(
ETH Zürich
,
Zürich
,
1998
), pp.
75
93
.
28.
J. C.
Schön
,
M. A. C.
Wevers
, and
M.
Jansen
,
J. Phys.: Condens. Matter
15
,
5479
(
2003
).
29.
B.
Alakent
,
M. C.
Camurdan
, and
P.
Doruker
,
J. Chem. Phys.
123
,
144910
(
2005
).
30.
J. C.
Schön
and
M.
Jansen
,
Int. J. Mater. Res.
100
,
135
(
2009
).
31.
P.
Salamon
,
D.
Wales
,
A.
Segall
,
Y.-A.
Lai
,
J. C.
Schön
,
K. H.
Hoffmann
, and
B.
Andresen
,
J. Non-Equilib. Thermodyn.
41
,
13
(
2016
).
32.
I. E.
Farquhar
,
Ergodic Theory in Statistical Mechanics
(
Interscience
,
New York
,
1964
).
33.

There are different types of complex systems, some of which will be “complex” on all time scales of practical interest, but will exhibit such an exponential relaxation at extremely long observation times (e.g., glasses like SiO2 where a crystalline ground state exists and is accessible, in principle), while other systems will never show a global exponential relaxation behavior (such as ideal spin glasses in the computer).

34.
35.

Due to the probabilistic nature of their definition, the numerical values of the characteristic times should only be treated as approximate, and in extreme cases only as order of magnitude estimates.

36.

We ignore restrictions due to special relativity.

38.
D. E.
Logan
and
P. G.
Wolynes
,
J. Chem. Phys.
93
,
4994
(
1990
).
39.

Semi-classical here refers to systems where we, e.g., can map the quantum system to a model spin system with spins localized on a discrete lattice, or where the Born-Oppenheimer approximation holds and the ionic/atomic degrees of freedom can be treated as essentially classical leading to a standard multi-minima energy landscape for the atom arrangements of the chemical system.

40.
M.
Goldstein
,
J. Chem. Phys.
51
,
3728
(
1969
).
41.
D.
Kumar
and
S. R.
Shenoy
,
Phys. Rev. B
34
,
3547
(
1986
).
42.

Such regions are often called “stable states.”24,107 Intuitively, it is clear what this means, but the precise definition of what constitutes a stable state varies to a certain extent; we are not going to discuss these subtleties here.

43.
P.
Sibani
,
J. C.
Schön
,
P.
Salamon
, and
J.-O.
Andersson
,
Europhys. Lett.
22
,
479
(
1993
).
44.
P.
Sibani
and
P.
Schriver
,
Phys. Rev. B
49
,
6667
(
1994
).
46.
P.
Sibani
,
R. van der
Pas
, and
J. C.
Schön
,
Comput. Phys. Commun.
116
,
17
(
1999
).
47.
K. H.
Hoffmann
and
P.
Sibani
,
Phys. Rev. A
38
,
4261
(
1988
).
48.
J. C.
Schön
,
H.
Putz
, and
M.
Jansen
,
J. Phys.: Condens. Matter
8
,
143
(
1996
).
49.
50.
O. M.
Becker
and
M.
Karplus
,
J. Chem. Phys.
106
,
1495
(
1997
).
51.
D. J.
Wales
,
M. A.
Miller
, and
T. R.
Walsh
,
Nature
394
,
758
(
1998
).
52.

Examples of nested marginally ergodic regions on a landscape are, e.g., amorphous or glassy compounds where aging phenomena108–110 are observed.

53.
M. A. C.
Wevers
,
J. C.
Schön
, and
M.
Jansen
,
J. Phys. A: Math. Gen.
34
,
4041
(
2001
).
54.

In the beginning of the study of multi-minima energy landscapes, one often performed only a single gradient-based deterministic minimization from such stopping points, producing what was called the inherent structure landscape.111,112

55.
J. C.
Schön
,
Ž. P.
Čančarević
,
A.
Hannemann
, and
M.
Jansen
,
J. Chem. Phys.
128
,
194712
(
2008
).
56.

The stochastic time evolution represents the time evolution of an ensemble of random walkers as a Markov process, starting from some initial probability distribution over the states of the system; a special case would be to concentrate all the probability initially into one microstate.

57.

In the example shown in the figure, the equilibration tree exhibits multiple sub-branchings even suggesting a self-similar structure, while the lid-based tree consisted of a simple main trunk to which all side-pockets were directly connected without any notable sub-branches.43 

58.
W.
Forst
,
Theory of Unimolecular Reactions
(
Academic Press
,
New York
,
1973
).
59.
D. M.
Leitner
,
Phys. Rev. E
48
,
2536
(
1993
).
60.
K. H.
Hoffmann
and
J. C.
Schön
,
Found. Phys. Lett.
18
,
171
(
2005
).
61.

This approach is somewhat reminiscent of zone melting in the production of, e.g., high-quality low-defect semiconductor materials.

62.

In fact, even modeling the dynamics in the presence of only energetic barriers assumes multiple attempts to cross the barrier in a quasi-equilibrium situation, leading to an Arrhenius-law type behavior.

63.
M. A. C.
Wevers
,
J. C.
Schön
, and
M.
Jansen
,
J. Phys.: Condens. Matter
11
,
6487
(
1999
).
64.
S.
Neelamraju
,
J. C.
Schön
,
K.
Doll
, and
M.
Jansen
,
Phys. Chem. Chem. Phys.
14
,
1223
(
2012
).
65.

Since in the ESA such searches are employed to study equilibration as a function of temperature within a pocket that serves as candidate of a locally ergodic region, this is no problem in that application. Also, the barriers we investigate would mostly be those that separate locally ergodic regions.

66.
J. C.
Schön
,
Ber. Bunsen-Ges. Phys. Chem.
100
,
1388
(
1996
).
67.
P.
Sibani
and
K. H.
Hoffmann
,
Phys. A
234
,
751
(
1997
).
68.
J. C.
Schön
,
J. Phys. Chem. A
106
,
10886
(
2002
).
69.
J. C.
Schön
and
P.
Sibani
,
Europhys. Lett.
49
,
196
(
2000
).
70.
J. C.
Schön
,
Z. Anorg. Allg. Chem.
630
,
2354
(
2004
).
71.
S.
Kirkpatrick
,
C. D.
Gelatt
, Jr.
, and
M. P.
Vecchi
,
Science
220
,
671
(
1983
).
72.
J. H.
Holland
,
Adaptation in Natural and Artificial Systems
(
University of Michigan Press
,
Ann Arbor
,
1975
).
73.
H.
Putz
,
J. C.
Schön
, and
M.
Jansen
,
Comput. Mater. Sci.
11
,
309
(
1998
).
74.
75.
H.
Putz
,
J. C.
Schön
, and
M.
Jansen
,
Z. Anorg. Allg. Chem.
625
,
1624
(
1999
).
76.
D.
Zagorac
,
J. C.
Schön
,
I. V.
Pentin
, and
M.
Jansen
,
Process. Appl. Ceram.
5
,
73
(
2011
).
77.
K.
Doll
,
J. C.
Schön
, and
M.
Jansen
,
J. Chem. Phys.
133
,
024107
(
2010
).
78.
R.
Pacheco-Contreras
,
M.
Dessens-Felix
,
D. J.
Borbon-Gonzalez
,
L. O.
Paz-Borbon
,
R. L.
Johnston
,
J. C.
Schön
, and
A.
Posada-Amarillas
,
J. Phys. Chem. A
116
,
5235
(
2012
).
79.
C. J.
Heard
,
R. L.
Johnston
, and
J. C.
Schön
,
ChemPhysChem
16
,
1461
(
2015
).
80.
S.
Neelamraju
,
R. L.
Johnston
, and
J. C.
Schön
,
J. Chem. Theory Comput.
12
,
2471
(
2016
).
81.

This procedure shares some features with the so-called deluge-algorithm113 where the random walker starts at very high energies and encounters a steadily decreasing lid until the walker ends up in some low-lying minimum. By increasing the lid value once no deeper minimum is found, the threshold algorithm avoids the trapping caused by the monotonically decreasing lid of the deluge-algorithm.

82.
D. J.
Wales
and
J. P. K.
Doye
,
J. Phys. Chem. A
101
,
5111
(
1997
).
83.
M.
Iwamatsu
and
Y.
Okabe
,
Chem. Phys. Lett.
399
,
396
(
2004
).
84.
D. J.
Wales
, in
Modern Methods of Crystal Structure Prediction
, edited by
A. R.
Oganov
(
Wiley VCh
,
Weinheim
,
2011
), Chap. 2, pp.
29
54
.
85.
A.
Möbius
,
A.
Neklioudov
,
A.
Diaz-Sánchez
,
K. H.
Hoffmann
,
A.
Fachat
, and
M.
Schreiber
,
Phys. Rev. Lett.
79
,
4297
(
1997
).
86.
A.
Möbius
,
K. H.
Hoffmann
, and
J. C.
Schön
, in
Complexity, Metastability, and Nonextensivity
, edited by
C.
Beck
,
G.
Benedek
,
A.
Rapisarda
, and
C.
Tsallis
(
International School of Solid State Physics, World Scientific Singapore
,
2004
), pp.
215
219
.
87.
J. C.
Schön
,
Process. Appl. Ceram.
9
,
157
(
2015
).
88.
D. M.
Deaven
and
K. M.
Ho
,
Phys. Rev. Lett.
75
,
288
(
1995
).
89.
S. M.
Woodley
,
P. D.
Battle
,
J. D.
Gale
, and
C. R. A.
Catlow
,
Phys. Chem. Chem. Phys.
1
,
2535
(
1999
).
90.
B. J.
Alder
and
T. E.
Wainwright
,
J. Chem. Phys.
27
,
1208
(
1957
).
91.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
92.
H. E. A.
Huitema
and
J. P. van der
Eerden
,
J. Chem. Phys.
110
,
3267
(
1999
).
93.
J. C.
Schön
and
M.
Jansen
, in
Modern Methods of Crystal Structure Prediction
, edited by
A. R.
Oganov
(
Wiley VCh
,
Weinheim
,
2011
), Chap. 4, pp.
67
106
.
94.
W. W.
Tipton
and
R. G.
Hennig
, in
Modern Methods of Crystal Structure Prediction
, edited by
A. R.
Oganov
(
Wiley VCh
,
Weinheim
,
2011
), Chap. 3, pp.
55
66
.
95.
C.
Oligschleger
and
H. R.
Schober
,
Phys. Rev. B
59
,
811
(
1999
).
96.
C.
Oligschleger
,
Phys. Rev. B
60
,
3182
(
1999
).
97.
D.
Liesegang
and
C.
Oligschleger
,
J. Mod. Phys.
5
,
149
(
2014
).
98.
A.
Brinkmann
,
F.
Langer
,
F.
Scholler
,
Z.
Shan
,
J.
Wilmers
,
Y.
Zhao
, and
C.
Oligschleger
,
Phys. B
406
,
2931
(
2011
).
99.
S.
Immel
and
F. W.
Lichtenthaler
,
Liebigs Ann.
1995
,
1925
.
100.
K. N.
Kirschner
,
A. B.
Yongye
,
S. M.
Tschampel
,
J.
Gonzalez-Outeirino
,
C. R.
Daniels
,
B. L.
Foley
, and
R. J.
Woods
,
J. Comput. Chem.
29
,
622
(
2008
).
101.
Essentials of Glycobiology
, edited by
A.
Varki
,
R. D.
Cummings
,
J. D.
Esko
,
H. H.
Freeze
,
P.
Stanley
,
C. R.
Bertozzi
,
G. W.
Hart
, and
M. E.
Etzler
, 2nd ed. (
Cold Spring Harbor Laboratory Press
,
Cold Spring Harbor
,
2009
).
102.
R.
Hundt
,
J. C.
Schön
,
S.
Neelamraju
,
J.
Zagorac
, and
M.
Jansen
,
J. Appl. Cryst.
46
,
587
(
2013
).
103.
R.
Hundt
, KPLOT: A Program for Plotting and Analysing Crystal Structures, Version 9,
Technicum Scientific Publishing
,
Stuttgart, Germany
,
2016
.
104.
D. A.
Case
,
T. A.
Darden
,
C. I.
T. E.
,
C. L.
Simmerling
,
J.
Wang
,
R. E.
Duke
,
R.
Luo
,
R. C.
Walker
,
W.
Zhang
,
K. M.
Merz
,
B.
Roberts
,
S.
Hayik
,
A.
Roitberg
,
G.
Seabra
,
J.
Swails
,
A. W.
Götz
,
I.
Kolossvary
,
K. F.
Wong
,
F.
Paesani
,
J.
Vanicek
,
R. M.
Wolf
,
J.
Liu
,
X.
Wu
,
S. R.
Brozell
,
T.
Steinbrecher
,
H.
Gohlke
,
Q.
Cai
,
X.
Ye
,
J.
Wang
,
M.-J.
Hsieh
,
G.
Cui
,
D. R.
Roe
,
D. H.
Matthews
,
M. G.
Seetin
,
R.
Salomon-Ferrer
,
C.
Sagui
,
V.
Babin
,
T.
Luchko
,
S.
Gusarov
,
A.
Kovalenko
, and
P. A.
Kollman
, AMBERTOOLS12,
University of California San Francisco
,
San Francisco, USA
,
2012
).
105.

Picking a moveclass for a (stochastic) global optimization method is often considered the “black art” of global optimization.

106.

Of course, this special design of moves is often guided by heuristic information about the system under investigation, and there exists the quite real danger of not reaching all relevant parts of the landscape.

107.
H.
Grubmüller
,
Phys. Rev. E
52
,
2893
(
1995
).
108.
J.
Van Turnhout
,
P. TH. A.
Klaase
,
P. H.
Ong
, and
L. C. E.
Struik
,
J. Electrostat.
3
,
171
(
1977
).
109.
L.
Struik
,
Physical Aging in Amorphous Polymers and Other Materials
(
Elsevier
,
Amsterdam
,
1978
).
110.
A.
Hannemann
,
J. C.
Schön
,
M.
Jansen
, and
P.
Sibani
,
J. Phys. Chem. B
109
,
11770
(
2005
).
111.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. A
25
,
978
(
1982
).
112.
113.
G.
Dueck
,
J. Comput. Phys.
104
,
86
(
1993
).
114.
W.
Feller
,
An Introduction to Probability Theory and its Applications
(
Wiley and Sons
,
New York
,
1950
).
115.
J. C.
Schön
,
J. Phys. A: Math. Gen.
30
,
2367
(
1997
).
You do not currently have access to this content.