The reaction path of a mechanically induced chemical transformation changes under stress. It is well established that the force-induced structural changes of minima and saddle points, i.e., the movement of the stationary points on the original or stress-free potential energy surface, can be described by a Newton Trajectory (NT). Given a reactive molecular system, a well-fitted pulling direction, and a sufficiently large value of the force, the minimum configuration of the reactant and the saddle point configuration of a transition state collapse at a point on the corresponding NT trajectory. This point is called barrier breakdown point or bond breaking point (BBP). The Hessian matrix at the BBP has a zero eigenvector which coincides with the gradient. It indicates which force (both in magnitude and direction) should be applied to the system to induce the reaction in a barrierless process. Within the manifold of BBPs, there exist optimal BBPs which indicate what is the optimal pulling direction and what is the minimal magnitude of the force to be applied for a given mechanochemical transformation. Since these special points are very important in the context of mechanochemistry and catalysis, it is crucial to develop efficient algorithms for their location. Here, we propose a Gauss-Newton algorithm that is based on the minimization of a positively defined function (the so-called -function). The behavior and efficiency of the new algorithm are shown for 2D test functions and for a real chemical example.
Skip Nav Destination
An algorithm to locate optimal bond breaking points on a potential energy surface for applications in mechanochemistry and catalysis
,
,
,
Article navigation
21 October 2017
Research Article|
August 01 2017
An algorithm to locate optimal bond breaking points on a potential energy surface for applications in mechanochemistry and catalysis
Special Collection:
JCP Editors' Choice 2017
Josep Maria Bofill
;
Josep Maria Bofill
a)
1
Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona, and Institut de Química Teòrica i Computacional, Universitat de Barcelona (IQTCUB)
, Barcelona, Spain
Search for other works by this author on:
Jordi Ribas-Ariño;
Jordi Ribas-Ariño
b)
2
Departament de Ciència de Materials i Química Física, Secció de Química Física, Universitat de Barcelona and Institut de Química Teòrica i Computacional
, Universitat de Barcelona (IQTCUB), Barcelona, Spain
Search for other works by this author on:
Sergio Pablo García;
Sergio Pablo García
2
Departament de Ciència de Materials i Química Física, Secció de Química Física, Universitat de Barcelona and Institut de Química Teòrica i Computacional
, Universitat de Barcelona (IQTCUB), Barcelona, Spain
Search for other works by this author on:
Wolfgang Quapp
Wolfgang Quapp
c)
3
Mathematisches Institut, Universität Leipzig
, PF 100920, D-04009 Leipzig, Germany
Search for other works by this author on:
Josep Maria Bofill
1,a)
Jordi Ribas-Ariño
2,b)
Sergio Pablo García
2
Wolfgang Quapp
3,c)
1
Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona, and Institut de Química Teòrica i Computacional, Universitat de Barcelona (IQTCUB)
, Barcelona, Spain
2
Departament de Ciència de Materials i Química Física, Secció de Química Física, Universitat de Barcelona and Institut de Química Teòrica i Computacional
, Universitat de Barcelona (IQTCUB), Barcelona, Spain
3
Mathematisches Institut, Universität Leipzig
, PF 100920, D-04009 Leipzig, Germany
a)
Electronic mail: [email protected]
b)
Electronic mail: [email protected]
c)
Electronic mail: [email protected]
J. Chem. Phys. 147, 152710 (2017)
Article history
Received:
May 02 2017
Accepted:
July 07 2017
Citation
Josep Maria Bofill, Jordi Ribas-Ariño, Sergio Pablo García, Wolfgang Quapp; An algorithm to locate optimal bond breaking points on a potential energy surface for applications in mechanochemistry and catalysis. J. Chem. Phys. 21 October 2017; 147 (15): 152710. https://doi.org/10.1063/1.4994925
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
DeePMD-kit v2: A software package for deep potential models
Jinzhe Zeng, Duo Zhang, et al.
CREST—A program for the exploration of low-energy molecular chemical space
Philipp Pracht, Stefan Grimme, et al.
Related Content
Propagation and stability of chemical reaction fronts in coupled problems of mechanochemistry
AIP Conf. Proc. (July 2021)
Finding mechanochemical pathways and barriers without transition state search
J. Chem. Phys. (May 2015)
Prediction of reaction barriers and force-induced instabilities under mechanochemical conditions with an approximate model: A case study of the ring opening of 1,3-cyclohexadiene
J. Chem. Phys. (January 2012)
Exploring the topography of the stress-modified energy landscapes of mechanosensitive molecules
J. Chem. Phys. (March 2014)
Chemical reactions modulated by mechanical stress: Extended Bell theory
J. Chem. Phys. (October 2011)