Heterogeneous catalytic reactions on surface and interfaces are renowned for ample intermediate adsorbates and complex reaction networks. The common practice to reveal the reaction mechanism is via theoretical computation, which locates all likely transition states based on the pre-guessed reaction mechanism. Here we develop a new theoretical method, namely, stochastic surface walking (SSW)-Cat method, to resolve the lowest energy reaction pathway of heterogeneous catalytic reactions, which combines our recently developed SSW global structure optimization and SSW reaction sampling. The SSW-Cat is automated and massively parallel, taking a rough reaction pattern as input to guide reaction search. We present the detailed algorithm, discuss the key features, and demonstrate the efficiency in a model catalytic reaction, water-gas shift reaction on Cu(111) (CO + H2O → CO2 + H2). The SSW-Cat simulation shows that water dissociation is the rate-determining step and formic acid (HCOOH) is the kinetically favorable product, instead of the observed final products, CO2 and H2. It implies that CO2 and H2 are secondary products from further decomposition of HCOOH at high temperatures. Being a general purpose tool for reaction prediction, the SSW-Cat may be utilized for rational catalyst design via large-scale computations.

1.
G.
Ertl
,
S. B.
Lee
, and
M.
Weiss
,
Surf. Sci.
114
(
2
),
527
(
1982
).
2.
Z.-P.
Liu
,
S. J.
Jenkins
, and
D. A.
King
,
Phys. Rev. Lett.
94
(
19
),
196102
(
2005
).
3.
B.
Hammer
and
J. K.
Nørskov
,
Adv. Catal.
45
,
71
(
2000
).
4.
Z. W.
Ulissi
,
A. J.
Medford
,
T.
Bligaard
, and
J. K.
Nørskov
,
Nat. Commun.
8
,
14621
(
2017
).
5.
A.
Alavi
,
P.
Hu
,
T.
Deutsch
,
P. L.
Silvestrelli
, and
J.
Hutter
,
Phys. Rev. Lett.
80
(
16
),
3650
(
1998
).
6.
G.-J.
Cheng
,
X.
Zhang
,
L. W.
Chung
,
L.
Xu
, and
Y.-D.
Wu
,
J. Am. Chem. Soc.
137
(
5
),
1706
(
2015
).
7.
D. J.
Wales
,
Int. Rev. Phys. Chem.
25
(
1-2
),
237
(
2006
).
8.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
111
(
15
),
7010
(
1999
).
9.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
,
J. Chem. Phys.
113
(
22
),
9901
(
2000
).
10.
H.-F.
Wang
and
Z.-P.
Liu
,
J. Am. Chem. Soc.
130
(
33
),
10996
(
2008
).
11.
C.
Shang
and
Z.-P.
Liu
,
J. Chem. Theory Comput.
6
(
4
),
1136
(
2010
).
12.
R.
Martoňák
,
D.
Donadio
,
A. R.
Oganov
, and
M.
Parrinello
,
Nat. Mater.
5
(
8
),
623
(
2006
).
13.
D. J.
Wales
,
Mol. Phys.
100
(
20
),
3285
(
2002
).
14.
B.
Schaefer
,
S.
Mohr
,
M.
Amsler
, and
S.
Goedecker
,
J. Chem. Phys.
140
(
21
),
214102
(
2014
).
15.
D. J.
Wales
,
J. Chem. Phys.
130
(
20
),
204111
(
2009
).
16.
L.
Xu
and
G.
Henkelman
,
J. Chem. Phys.
129
(
11
),
114104
(
2008
).
17.
S.
Maeda
,
S.
Komagawa
,
M.
Uchiyama
, and
K.
Morokuma
,
Angew. Chem., Int. Ed.
50
(
3
),
644
(
2011
).
18.
R.
Ramozzi
and
K.
Morokuma
,
J. Org. Chem.
80
(
11
),
5652
(
2015
).
19.
S.
Maeda
,
K.
Ohno
, and
K.
Morokuma
,
Phys. Chem. Chem. Phys.
15
(
11
),
3683
(
2013
).
20.
C. F.
Goldsmith
and
R. H.
West
,
J. Phys. Chem. C
121
(
18
),
9970
(
2017
).
21.
S.
Rangarajan
,
A.
Bhan
, and
P.
Daoutidis
,
Comput. Chem. Eng.
45
,
114
(
2012
).
22.
C.
Shang
and
Z. P.
Liu
,
J. Chem. Theory Comput.
9
(
3
),
1838
(
2013
).
23.
X. J.
Zhang
,
C.
Shang
, and
Z. P.
Liu
,
J. Chem. Theory Comput.
9
(
7
),
3252
(
2013
).
24.
X.-J.
Zhang
and
Z.-P.
Liu
,
Phys. Chem. Chem. Phys.
17
(
4
),
2757
(
2015
).
25.
H.-J.
Zhai
,
Y.-F.
Zhao
,
W.-L.
Li
,
Q.
Chen
,
H.
Bai
,
H.-S.
Hu
,
Z. A.
Piazza
,
W.-J.
Tian
,
H.-G.
Lu
, and
Y.-B.
Wu
,
Nat. Chem.
6
(
8
),
727
(
2014
).
26.
G.-F.
Wei
and
Z.-P.
Liu
,
J. Chem. Theory Comput.
12
(
9
),
4698
(
2016
).
27.
S.-C.
Zhu
,
S.-H.
Xie
, and
Z.-P.
Liu
,
J. Am. Chem. Soc.
137
(
35
),
11532
(
2015
).
28.
S.-H.
Guan
,
X.-J.
Zhang
, and
Z.-P.
Liu
,
J. Am. Chem. Soc.
137
(
25
),
8010
(
2015
).
29.
X.-J.
Zhang
,
C.
Shang
, and
Z.-P.
Liu
,
J. Chem. Theory Comput.
9
(
12
),
5745
(
2013
).
30.
Q.
Chen
,
G.-F.
Wei
,
W.-J.
Tian
,
H.
Bai
,
Z.-P.
Liu
,
H.-J.
Zhai
, and
S.-D.
Li
,
Phys. Chem. Chem. Phys.
16
(
34
),
18282
(
2014
).
31.
X.-J.
Zhang
,
C.
Shang
, and
Z.-P.
Liu
,
Phys. Chem. Chem. Phys.
19
(
6
),
4725
(
2017
).
32.
D.
Weininger
,
J. Chem. Inf. Model.
28
(
1
),
31
(
1988
).
33.
D.
Weininger
,
A.
Weininger
, and
J. L.
Weininger
,
J. Chem. Inf. Model.
29
(
2
),
97
(
1989
).
34.
A.
Karwath
and
L.
De Raedt
,
J. Chem. Inf. Model.
46
(
6
),
2432
(
2006
).
35.
M. S.
José
,
A.
Emilio
,
D. G.
Julian
,
G.
Alberto
,
J.
Javier
,
O.
Pablo
, and
S.-P.
Daniel
,
J. Phys.: Condens. Matter
14
(
11
),
2745
(
2002
).
36.
J.
Junquera
,
Ó.
Paz
,
D.
Sánchez-Portal
, and
E.
Artacho
,
Phys. Rev. B: Condens. Matter Mater. Phys.
64
(
23
),
235111
(
2001
).
37.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
(
18
),
3865
(
1996
).
38.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B: Condens. Matter Mater. Phys.
47
(
1
),
558
(
1993
).
39.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
(
1
),
15
(
1996
).
40.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B: Condens. Matter Mater. Phys.
59
(
3
),
1758
(
1999
).
41.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B: Condens. Matter Mater. Phys.
13
(
12
),
5188
(
1976
).
42.
Y.
Yasaka
,
K.
Yoshida
,
C.
Wakai
,
N.
Matubayasi
, and
M.
Nakahara
,
J. Phys. Chem. A
110
(
38
),
11082
(
2006
).
43.
P.
Liu
,
J. Chem. Phys.
133
(
20
),
204705
(
2010
).
44.
A. E.
Baber
,
K.
Mudiyanselage
,
S. D.
Senanayake
,
A.
Beatriz-Vidal
,
K. A.
Luck
,
E. C. H.
Sykes
,
P.
Liu
,
J. A.
Rodriguez
, and
D. J.
Stacchiola
,
Phys. Chem. Chem. Phys.
15
(
29
),
12291
(
2013
).
45.
A. B.
Vidal
and
P.
Liu
,
Phys. Chem. Chem. Phys.
14
(
48
),
16626
(
2012
).
46.
J. A.
Rodriguez
,
J.
Graciani
,
J.
Evans
,
J. B.
Park
,
F.
Yang
,
D.
Stacchiola
,
S. D.
Senanayake
,
S.
Ma
,
M.
Pérez
,
P.
Liu
,
J. F.
Sanz
, and
J.
Hrbek
,
Angew. Chem., Int. Ed.
48
(
43
),
8047
(
2009
).
47.
D. C.
Grenoble
,
M. M.
Estadt
, and
D. F.
Ollis
,
J. Catal.
67
(
1
),
90
(
1981
).
48.
I.
Fishtik
and
R.
Datta
,
Surf. Sci.
512
(
3
),
229
(
2002
).
49.
A. A.
Gokhale
,
J. A.
Dumesic
, and
M.
Mavrikakis
,
J. Am. Chem. Soc.
130
(
4
),
1402
(
2008
).
50.
J.
Nakamura
,
J. M.
Campbell
, and
C. T.
Campbell
,
J. Chem. Soc., Faraday Trans.
86
(
15
),
2725
(
1990
).
51.
D. S.
Newsome
,
Catal. Rev.
21
(
2
),
275
(
1980
).
52.
M. D.
Marcinkowski
,
C. J.
Murphy
,
M. L.
Liriano
,
N. A.
Wasio
,
F. R.
Lucci
, and
E. C. H.
Sykes
,
ACS Catal.
5
(
12
),
7371
(
2015
).
53.
M. J.
Murphy
and
A.
Hodgson
,
J. Chem. Phys.
108
(
10
),
4199
(
1998
).
54.
A.
Forni
,
G.
Wiesenekker
,
E. J.
Baerends
, and
G. F.
Tantardini
,
Int. J. Quantum Chem.
52
(
4
),
1067
(
1994
).
55.
J.
Greeley
and
M.
Mavrikakis
,
J. Phys. Chem. B
109
(
8
),
3460
(
2005
).
56.
T.
van Herwijnen
and
W. A.
de Jong
,
J. Catal.
63
(
1
),
83
(
1980
).
57.
T.
van Herwijnen
,
R. T.
Guczalski
, and
W. A.
de Jong
,
J. Catal.
63
(
1
),
94
(
1980
).
58.
Q.-L.
Tang
,
Q.-J.
Hong
, and
Z.-P.
Liu
,
J. Catal.
263
(
1
),
114
(
2009
).
59.
Q.-L.
Tang
and
Z.-P.
Liu
,
J. Phys. Chem. C
114
(
18
),
8423
(
2010
).
60.
Q.-J.
Hong
and
Z.-P.
Liu
,
Surf. Sci.
604
(
21
),
1869
(
2010
).
61.
J.
Chen
and
Z.-P.
Liu
,
J. Am. Chem. Soc.
130
(
25
),
7929
(
2008
).
62.
G. L.
Bezemer
,
J. H.
Bitter
,
H. P. C. E.
Kuipers
,
H.
Oosterbeek
,
J. E.
Holewijn
,
X.
Xu
,
F.
Kapteijn
,
A. J.
van Dillen
, and
K. P.
de Jong
,
J. Am. Chem. Soc.
128
(
12
),
3956
(
2006
).
You do not currently have access to this content.