The emergence of supramolecular aggregates from simple microscopic interaction rules is a fascinating feature of complex fluids which, besides its fundamental interest, has potential applications in many areas, from biological self-assembly to smart material design. We here investigate by Monte Carlo simulation the equilibrium structure of a two-dimensional mixture of asymmetric dimers and spheres (disks). Dimers and disks are hard particles, with an additional short-range attraction between a disk and the smaller monomer of a dimer. The model parameters and thermodynamic conditions probed are typical of colloidal fluid mixtures. In spite of the minimalistic character of the interaction, we observe—upon varying the relative concentration and size of the two colloidal species—a rich inventory of mesoscale structures at low temperature, such as clusters, lamellæ (i.e., polymer-like chains), and gel-like networks. For colloidal species of similar size and near equimolar concentrations, a dilute fluid of clusters gives way to floating lamellæ upon cooling; at higher densities, the lamellæ percolate through the simulation box, giving rise to an extended network. A crystal-vapour phase-separation may occur for a mixture of dimers and much larger disks. Finally, when the fluid is brought in contact with a planar wall, further structures are obtained at the interface, from layers to branched patterns, depending on the nature of wall-particle interactions.

1.
G. M.
Whitesides
and
B.
Grzybowski
,
Science
295
,
2418
(
2002
).
2.
G. M.
Whitesides
and
M.
Boncheva
,
Proc. Natl. Acad. Sci. U. S. A.
99
,
4769
(
2002
).
3.
M.
Boncheva
and
G. M.
Whitesides
,
MRS Bull.
30
,
736
(
2005
).
4.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
, 3rd ed. (
Academic Press
,
London
,
1992
).
5.
K.
Thorkelsson
,
P.
Bai
, and
T.
Xu
,
Nano Today
10
,
48
(
2015
).
6.
J. A.
Luiken
and
P. G.
Bolhuis
,
Phys. Rev. E
88
,
012303
(
2013
).
7.
Z.
Preisler
,
T.
Vissers
,
F.
Smallenburg
,
G.
Munaò
, and
F.
Sciortino
,
J. Phys. Chem. B
117
,
9540
(
2013
).
8.
T.
Vissers
,
F.
Smallenburg
,
G.
Munaò
,
Z.
Preisler
, and
F.
Sciortino
,
J. Chem. Phys.
140
,
144902
(
2014
).
9.
G.
Avvisati
,
T.
Vissers
, and
M.
Dijkstra
,
J. Chem. Phys.
142
,
084905
(
2014
).
10.
G.
Munaò
,
P.
O’Toole
,
T. S.
Hudson
,
D.
Costa
,
C.
Caccamo
,
A.
Giacometti
, and
F.
Sciortino
,
J. Phys.: Condens. Matter
27
,
234101
(
2015
).
11.
J. M.
Dempster
and
M.
Olvera De La Cruz
,
ACS Nano
10
,
5909
(
2016
).
12.
L. B.
Krott
,
C.
Gavazzoni
, and
J. R.
Bordin
,
J. Chem. Phys.
145
,
244906
(
2016
).
13.
P.
O’Toole
,
A.
Giacometti
, and
T. S.
Hudson
,
Soft Matter
13
,
803
(
2017
).
14.
A.
Yethiraj
and
A.
van Blaaderen
,
Nature
421
,
513
(
2003
).
15.
Y.
Wang
,
Y.
Wang
,
D. R.
Breed
,
V. N.
Manoharan
,
L.
Feng
,
A. D.
Hollingsworth
,
M.
Weck
, and
D. J.
Pine
,
Nature
491
,
51
(
2012
).
16.
K.
Kataoka
,
A.
Harada
, and
Y.
Nagasaki
,
Adv. Drug Delivery Rev.
47
,
113
(
2001
).
17.
M. N.
Singh
,
K. S. Y.
Hemant
,
M.
Ram
, and
H. G.
Shivakumar
,
Res. Pharm. Sci.
5
,
65
(
2010
).
18.
A.
Kumari
,
R.
Singla
,
A.
Guliani
, and
S. K.
Yadav
,
EXCLI J.
13
,
265
(
2014
).
19.
D. J.
McClements
,
E. A.
Decker
,
Y.
Park
, and
J.
Weiss
,
Crit. Rev. Food Sci. Nutr.
49
,
577
(
2009
).
20.
V.
Dordević
 et al.,
Food Eng. Rev.
7
,
452
(
2015
).
21.
G.
Munaò
,
D.
Costa
,
S.
Prestipino
, and
C.
Caccamo
,
Phys. Chem. Chem. Phys.
18
,
24922
(
2016
).
22.
S.
Prestipino
,
G.
Munaò
,
D.
Costa
, and
C.
Caccamo
,
J. Chem. Phys.
146
,
084902
(
2017
).
23.
G.
Munaò
,
D.
Costa
,
S.
Prestipino
, and
C.
Caccamo
,
Colloids Surf. A
532
,
397
(
2017
).
24.
W.
Li
,
Y.
Liu
,
G.
Brett
, and
J. D.
Gunton
,
Soft Matter
8
,
6027
(
2012
).
25.
R.
Malik
,
J.
Genzer
, and
C. K.
Hall
,
Langmuir
31
,
3518
(
2015
).
26.
J. R.
Wolters
,
J. E.
Verweij
,
G.
Avvisati
,
M.
Dijkstra
, and
W. K.
Kegel
,
Langmuir
33
,
3270
(
2017
).
27.
E.
Bianchi
,
B.
Capone
,
I.
Coluzza
,
L.
Rovigatti
, and
P. D. J.
van Oostrum
,
Phys. Chem. Chem. Phys.
19
,
19847
(
2017
).
28.
T.
Dotera
,
Isr. J. Chem.
51
,
1197
(
2011
).
29.
H.
Pattabhiraman
,
A. P.
Gantapara
, and
M.
Dijkstra
,
J. Chem. Phys.
143
,
164905
(
2015
).
30.
B.
Chacko
,
C.
Chalmers
, and
A. J.
Archer
,
J. Chem. Phys.
143
,
244904
(
2015
).
31.
H. G.
Schoberth
,
H.
Emmerich
,
M.
Holzinger
,
M.
Dulle
,
S.
Förster
, and
T.
Gruhn
,
Soft Matter
12
,
7644
(
2016
).
32.
M.
Zu
,
P.
Tan
, and
N.
Xu
, e-print arXiv:1703.08783.
33.
H.
Pattabhiraman
and
M.
Dijkstra
,
J. Phys.: Condens. Matter
29
,
094003
(
2017
).
34.
35.
M. N.
van der Linden
,
J. P. K.
Doye
, and
A. A.
Louis
,
J. Chem. Phys.
136
,
054904
(
2012
).
36.
A.
Reinhardt
,
F.
Romano
, and
J. P. K.
Doye
,
Phys. Rev. Lett.
110
,
255503
(
2013
).
37.
A.
Reinhardt
,
J. S.
Schreck
,
F.
Romano
, and
J. P. K.
Doye
,
J. Phys.: Condens. Matter
29
,
014006
(
2017
).
38.
R. A.
Mathews K
and
E.
Mani
, e-print arXiv:1705.05321.
39.
E.
Słyk
,
W.
Rżysko
, and
P.
Bryk
,
Soft Matter
12
,
9538
(
2016
).
40.
M.
Borówko
,
W.
Rżysko
,
S.
Sokołowski
, and
T.
Staszewski
,
J. Chem. Phys.
147
,
014904
(
2017
).
42.
S.-H.
Chen
,
J.
Rouch
,
F.
Sciortino
, and
P.
Tartaglia
,
J. Phys.: Condens. Matter
6
,
10855
(
1994
).
43.
P. D.
Godfrin
,
R.
Castañeda-Priego
,
Y.
Liu
, and
N. J.
Wagner
,
J. Chem. Phys.
139
,
154904
(
2013
).
44.
P. D.
Godfrin
,
N. E.
Valadez-Pérez
,
N. J.
Wagner
, and
Y.
Liu
,
Soft Matter
10
,
5061
(
2014
).
45.
M. Y.
Lin
,
H. M.
Lindsay
,
D. A.
Weitz
,
R. C.
Ball
,
R.
Klein
, and
P.
Meakin
,
Nature
339
,
360
(
1989
).
46.
L. B.
Partay
,
P.
Jedlovszky
,
I.
Brovchenko
, and
A.
Oleinikova
,
J. Phys. Chem. B
111
,
7603
(
2007
).
47.
S.
Prestipino
,
A.
Laio
, and
E.
Tosatti
,
J. Chem. Phys.
138
,
064508
(
2013
).
48.
S.
Prestipino
,
A.
Laio
, and
E.
Tosatti
,
J. Chem. Phys.
140
,
094501
(
2014
).
49.
M. C.
Abramo
,
C.
Caccamo
,
D.
Costa
,
P. V.
Giaquinta
,
G.
Malescio
,
G.
Munaò
, and
S.
Prestipino
,
J. Chem. Phys.
142
,
214502
(
2015
).
50.
A.
Statt
,
P.
Virnau
, and
K.
Binder
,
Phys. Rev. Lett.
114
,
026101
(
2015
).
51.
N. A. M.
Araújo
,
C. S.
Dias
, and
M. M.
Telo da Gama
,
J. Phys.: Condens. Matter
27
,
194123
(
2015
).
You do not currently have access to this content.