Most substances can crystallise into two or more different crystal lattices called polymorphs. Despite this, there are no systems in which we can quantitatively predict the probability of one competing polymorph forming instead of the other. We address this problem using large scale (hundreds of events) studies of the competing nucleation of the alpha and gamma polymorphs of glycine. In situ Raman spectroscopy is used to identify the polymorph of each crystal. We find that the nucleation kinetics of the two polymorphs is very different. Nucleation of the alpha polymorph starts off slowly but accelerates, while nucleation of the gamma polymorph starts off fast but then slows. We exploit this difference to increase the purity with which we obtain the gamma polymorph by a factor of ten. The statistics of the nucleation of crystals is analogous to that of human mortality, and using a result from medical statistics, we show that conventional nucleation data can say nothing about what, if any, are the correlations between competing nucleation processes. Thus we can show that with data of our form it is impossible to disentangle the competing nucleation processes. We also find that the growth rate and the shape of a crystal depend on it when nucleated. This is new evidence that nucleation and growth are linked.

1.
J.
Bauer
,
S.
Spanton
,
R.
Henry
,
J.
Quick
,
W.
Dziki
,
W.
Porter
, and
J.
Morris
,
Pharm. Res.
18
,
859
(
2001
).
2.
S. L.
Morissette
,
S.
Soukasene
,
D.
Levinson
,
M. J.
Cima
, and
O.
Almarsson
,
Proc. Natl. Acad. Sci. U. S. A.
100
,
2180
(
2003
).
3.
L. J.
Little
,
R. P.
Sear
, and
J. L.
Keddie
,
Cryst. Growth Des.
15
,
5345
(
2015
).
4.
R. P.
Sear
,
CrystEngComm
16
,
6506
(
2014
).
5.
Y.
Diao
,
K. E.
Whaley
,
M. E.
Helgeson
,
M. A.
Woldeyes
,
P. S.
Doyle
,
A. S.
Myerson
,
T. A.
Hatton
, and
B. L.
Trout
,
J. Am. Chem. Soc.
134
,
673
(
2012
).
6.
A. I.
Toldy
,
A. Z. M.
Badruddoza
,
L.
Zheng
,
T. A.
Hatton
,
R.
Gunawan
,
R.
Rajagopalan
, and
S. A.
Khan
,
Cryst. Growth Des.
12
,
3977
(
2012
).
7.
J.-W.
Kim
,
J.-H.
Park
,
H.-M.
Shim
, and
K.-K.
Koo
,
Cryst. Growth Des.
13
,
4688
(
2013
).
8.
C.
Brandel
and
J. H.
ter Horst
,
Faraday Discuss.
179
,
199
(
2015
).
9.
S.
Akella
,
A.
Mowitz
,
M.
Heymann
, and
S.
Fraden
,
Cryst. Growth Des.
14
,
4487
(
2014
).
10.
D.
Duft
and
T.
Leisner
,
Atmos. Chem. Phys.
4
,
1997
(
2004
).
11.
P.
Laval
,
A.
Crombez
, and
J.-B.
Salmon
,
Langmuir
25
,
1836
(
2009
).
12.
N.
Javid
,
T.
Kendall
,
I. S.
Burns
, and
J.
Sefcik
,
Cryst. Growth Des.
16
,
4196
(
2016
).
13.
X.
Yang
,
J.
Lu
,
X.-J.
Wang
, and
C.-B.
Ching
,
J. Cryst. Growth
310
,
604
(
2008
).
14.
G.
Han
,
P. S.
Chow
, and
R. B. H.
Tan
,
Cryst. Growth Des.
12
,
2213
(
2012
).
15.
G.
Han
,
P. S.
Chow
, and
R. B. H.
Tan
,
Cryst. Growth Des.
15
,
1082
(
2015
).
16.
K.
Srinivasan
and
J.
Arumugam
,
Opt. Mater.
30
,
40
(
2007
).
17.
K.
Srinivasan
,
J. Cryst. Growth
311
,
156
(
2008
).
18.
K.
Kim
,
I. S.
Lee
,
A.
Centrone
,
T. A.
Hatton
, and
A. S.
Myerson
,
J. Am. Chem. Soc.
131
,
18212
(
2009
).
19.
C.
Forsyth
,
I. S.
Burns
,
P. A.
Mulheran
, and
J.
Sefcik
,
Cryst. Growth Des.
16
,
136
(
2016
).
20.
S. K.
Poornachary
,
P. S.
Chow
, and
R. B. H.
Tan
,
Cryst. Growth Des.
8
,
179
(
2008
).
21.
J. W.
Chew
,
S. N.
Black
,
P. S.
Chow
,
R. B. H.
Tan
, and
K. J.
Carpenter
,
CrystEngComm
9
,
128
(
2007
).
22.
C.
Chen
,
O.
Cook
,
C. E.
Nicholson
, and
S. J.
Cooper
,
Cryst. Growth Des.
11
,
2228
(
2011
).
23.
A.
Jawor-Baczynska
,
B. D.
Moore
,
H. S.
Lee
,
A. V.
McCormick
, and
J.
Sefcik
,
Faraday Discuss.
167
,
425
(
2013
).
24.
G.
Han
,
S.
Thirunahari
,
P.
Shan Chow
, and
R. B. H.
Tan
,
CrystEngComm
15
,
1218
(
2013
).
25.
G.
He
,
V.
Bhamidi
,
S. R.
Wilson
,
R. B. H.
Tan
,
P. J. A.
Kenis
, and
C. F.
Zukoski
,
Cryst. Growth Des.
6
,
1746
(
2006
).
26.
K.
Kim
,
A.
Centrone
,
T. A.
Hatton
, and
A. S.
Myerson
,
CrystEngComm
13
,
1127
(
2011
).
27.
C. E.
Nicholson
,
S. J.
Cooper
,
C.
Marcellin
, and
M. J.
Jamieson
,
J. Am. Chem. Soc.
127
,
11894
(
2005
).
28.
C. E.
Nicholson
,
C.
Chen
,
B.
Mendis
, and
S. J.
Cooper
,
Cryst. Growth Des.
11
,
363
(
2011
).
29.
S. A.
Rivera
,
D. G.
Allis
, and
B. S.
Hudson
,
Cryst. Growth Des.
8
,
3905
(
2008
).
30.
N.
Duff
,
Y. R.
Dahal
,
J. D.
Schmit
, and
B.
Peters
,
J. Chem. Phys.
140
,
014501
(
2014
).
31.
Y.
Shi
and
L.
Wang
,
J. Phys. D: Appl. Phys.
38
,
3741
(
2005
).
32.
M.
Sultana
and
K. F.
Jensen
,
Cryst. Growth Des.
12
,
6260
(
2012
).
33.
J.
Baran
and
H.
Ratajczak
,
Spectrochim. Acta, Part A
61
,
1611
(
2005
).
34.
Y.
Cui
,
J.
Stojakovic
,
H.
Kijima
, and
A. S.
Myerson
,
Cryst. Growth Des.
16
,
6131
(
2016
).
35.
G.
Han
,
S. K.
Poornachary
,
P. S.
Chow
, and
R. B. H.
Tan
,
Cryst. Growth Des.
10
,
4883
(
2010
).
36.
L.
Li
and
N.
Rodríguez-Hornedo
,
J. Cryst. Growth
121
,
33
(
1992
).
37.
R.
Dowling
,
R. J.
Davey
,
R. A.
Curtis
,
G.
Han
,
S. K.
Poornachary
,
P. S.
Chow
, and
R. B. H.
Tan
,
Chem. Commun.
46
,
5924
(
2010
).
38.
A.
Tsiatis
,
Proc. Natl. Acad. Sci. U. S. A.
72
,
20
(
1975
).
39.
A. V.
Peterson
,
Proc. Natl. Acad. Sci. U. S. A.
73
,
11
(
1976
).
40.
E.
Slud
and
D.
Byar
,
Biometrics
44
,
265
(
1988
).
41.
J.
Beyersmann
,
A.
Latouche
,
A.
Buchhol
, and
M.
Schumacher
,
Stat. Med.
28
,
956
(
2009
).
42.
D. R.
Cox
and
D.
Oakes
,
Analysis of Survival Data
(
Chapman and Hall
,
1984
).
43.
E. T.
Lee
,
Statistical Methods for Survival Data Analysis
, 2nd ed. (
Wiley
,
1992
).
44.
R. B.
Geskus
,
Data Analysis with Competing Risks and Intermediate States
(
Chapman and Hall/CRC
,
2015
).
45.
J. J.
Dignam
,
Q.
Zhang
, and
M. N.
Kocherginsky
,
Clin. Cancer Res.
18
,
2301
(
2012
).
46.
R.
Davey
and
J.
Garside
,
From Molecules to Crystallizers
(
Oxford University Press
,
Oxford
,
2000
).
47.
E. S.
Ferrari
,
R. J.
Davey
,
W. I.
Cross
,
A. L.
Gillon
, and
C. S.
Towler
,
Cryst. Growth Des.
3
,
53
(
2003
).
48.
G. D.
Botsaris
, in
Industrial Crystallization
, edited by
J.
Mullin
(
Springer
,
US
,
1976
), pp.
3
22
.
49.
S. G.
Agrawal
and
A. H. J.
Paterson
,
Chem. Eng. Commun.
202
,
698
(
2015
).

Supplementary Material

You do not currently have access to this content.