The response of a quadrupolar nucleus (nuclear spin with I >12) to an oscillating radio-frequency pulse/field is delicately dependent on the ratio of the quadrupolar coupling constant to the amplitude of the pulse in addition to its duration and oscillating frequency. Consequently, analytic description of the excitation process in the density operator formalism has remained less transparent within existing theoretical frameworks. As an alternative, the utility of the “concept of effective Floquet Hamiltonians” is explored in the present study to explicate the nuances of the excitation process in multilevel systems. Employing spin I=32 as a case study, a unified theoretical framework for describing the excitation of multiple-quantum transitions in static isotropic and anisotropic solids is proposed within the framework of perturbation theory. The challenges resulting from the anisotropic nature of the quadrupolar interactions are addressed within the effective Hamiltonian framework. The possible role of the various interaction frames on the convergence of the perturbation corrections is discussed along with a proposal for a “hybrid method” for describing the excitation process in anisotropic solids. Employing suitable model systems, the validity of the proposed hybrid method is substantiated through a rigorous comparison between simulations emerging from exact numerical and analytic methods.

1.
A.
Jerschow
,
Prog. Nucl. Magn. Reson. Spectrosc.
46
,
63
(
2005
).
2.
P. P.
Man
,
Encycl. Nucl. Magn. Reson.
6
,
3838
(
1996
).
3.
D.
Freude
, “
Quadrupolar nuclei in solid-state nuclear magnetic resonance
,” in
Encyclopedia of Analytical Chemistry
, edited by
R. A.
Meyers
(Wiley, Chichester,
2000
), p.
12188
.
4.
R. E.
Wasylishen
,
S. E.
Ashbrook
, and
S.
Wimperis
,
NMR of Quadrupolar Nuclei in Solid Materials
(
John Wiley & Sons
,
2012
).
5.
J.
Hanna
and
M.
Smith
,
Solid State Nucl. Magn. Reson.
38
,
1
(
2010
).
6.
E. R.
Andrew
,
A.
Bradbury
, and
R. G.
Eades
,
Nature
182
,
1659
(
1958
).
7.
L.
Frydman
and
J. S.
Harwood
,
J. Am. Chem. Soc.
117
,
5367
(
1995
).
8.
A.
Medek
,
J. S.
Harwood
, and
L.
Frydman
,
J. Am. Chem. Soc.
117
,
12779
(
1995
).
9.
J.
Rocha
,
C. M.
Morais
, and
C.
Fernandez
, “
Progress in multiple-quantum magic-angle spinning NMR spectroscopy
,” in
New Techniques in Solid-State NMR
, edited by
J.
Klinowski
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2005
), pp.
141
194
.
10.
A.
Goldbourt
and
P. K.
Madhu
,
Current Developments in Solid State NMR Spectroscopy
(
Springer Vienna
,
2002
), pp.
17
54
.
11.
B.
Sanctuary
and
T.
Halstead
,
Adv. Magn. Opt. Reson.
15
,
79
(
1990
).
12.
P. P.
Man
, “
Quadrupole couplings in nuclear magnetic resonance, general
,” in
Encyclopedia of Analytical Chemistry
(
John Wiley & Sons, Ltd.
,
2006
), pp.
12224
12265
.
13.
M.
Edén
,
Solid State Nucl. Magn. Reson.
36
,
1
(
2009
).
14.
M.
Mehring
,
Principles of High Resolution NMR in Solids
, 2nd ed. (
Springer
,
Berlin
,
1983 and 1999
).
15.
C. P.
Slichter
,
Principles of Magnetic Resonance
(
Springer Science & Business Media
,
2013
), Vol. 1.
16.
U.
Haeberlen
,
High Resolution NMR in Solids Selective Averaging: Supplement 1 Advances in Magnetic Resonance
(
Elsevier
,
2012
), Vol. 1.
17.
M.
Bak
,
J. T.
Rasmussen
, and
N. C.
Nielsen
,
J. Magn. Reson.
147
,
296
(
2000
).
18.
M.
Bak
,
J. T.
Rasmussen
, and
N. C.
Nielsen
,
J. Magn. Reson.
213
,
366
(
2011
).
19.
M.
Veshtort
and
R. G.
Griffin
,
J. Magn. Reson.
178
,
248
(
2006
).
20.
S.
Vega
and
Y.
Naor
,
J. Chem. Phys.
75
,
75
(
1981
).
21.
S.
Vega
,
J. Chem. Phys.
68
,
5518
(
1978
).
22.
A.
Abragam
,
The Principles of Nuclear Magnetism
, International Series of Monographs on Physics (
Clarendon Press
,
1961
).
23.
H.-T.
Kwak
,
S.
Prasad
,
Z.
Yao
,
P.
Grandinetti
,
J.
Sachleben
, and
L.
Emsley
,
J. Magn. Reson.
150
,
71
(
2001
).
24.
N. C.
Nielsen
,
H.
Bildsøe
, and
H. J.
Jakobsen
,
Chem. Phys. Lett.
191
,
205
(
1992
).
25.
R.
Ramesh
and
M. S.
Krishnan
,
J. Chem. Phys.
114
,
5967
(
2001
).
26.
D.
Srivastava
and
R.
Ramachandran
,
RSC Adv.
3
,
25231
(
2013
).
27.
R.
Venkata SubbaRao
,
D.
Srivastava
, and
R.
Ramachandran
,
Phys. Chem. Chem. Phys.
15
,
2081
(
2013
).
28.
D.
Srivastava
,
R.
Venkata SubbaRao
, and
R.
Ramachandran
,
Phys. Chem. Chem. Phys.
15
,
6699
(
2013
).
29.
R.
Ramachandran
and
R. G.
Griffin
,
J. Chem. Phys.
122
,
164502
(
2005
).
30.
R.
Ramachandran
and
R. G.
Griffin
,
J. Chem. Phys.
125
,
044510
(
2006
).
31.
M. K.
Pandey
,
Z.
Qadri
, and
R.
Ramachandran
,
J. Chem. Phys.
138
,
114108
(
2013
).
32.
M. K.
Pandey
and
R.
Ramachandran
,
Mol. Phys.
109
,
1545
(
2011
).
33.
V.
Aliev
and
M. R.
Aleksanyan
,
Opt. Spectrosc.
24
,
520
(
1968
).
34.
V.
Aliev
and
M. R.
Aleksanyan
,
Opt. Spectrosc.
24
,
695
(
1968
).
35.
D.
Papousek
and
M.
Aliev
,
Molecular Vibrational-Rotational Spectra: Theory and Applications of High Resolution Infrared, Microwave, and Raman Spectroscopy of Polyatomic Molecules
, Studies in Physical and Theoretical Chemistry (
Elsevier
,
1982
).
36.
J. H.
Van Vleck
,
Phys. Rev.
33
,
467
(
1929
).
37.
G.
Vinay
and
R.
Ramachandran
, in
Annual Reports on NMR Spectroscopy
, edited by
G. A.
Webb
(
Academic Press
,
2016
), Vol. 89, pp.
123
184
.
38.
J. H.
Shirley
,
Phys. Rev.
138
,
B979
(
1965
).
39.
R.
Garg
and
R.
Ramachandran
,
J. Chem. Phys.
146
,
184201
(
2017
).
40.
41.
U.
SivaRanjan
and
R.
Ramachandran
,
J. Chem. Phys.
140
,
054101
(
2014
).

Supplementary Material

You do not currently have access to this content.