Hybrid simulations, in which a part of the system is treated with atomistic resolution and the remainder is represented on a coarse-grained level, allow for fast sampling while using the accuracy of atomistic force fields. We apply a hybrid scheme to study the mechanical unfolding and refolding of a molecular complex using force probe molecular dynamics (FPMD) simulations. The degrees of freedom of the solvent molecules are treated in a coarse-grained manner while atomistic resolution is retained for the solute. The coupling between the solvent and the solute is provided using virtual sites. We test two different common coarse-graining procedures, the iterative Boltzmann inversion method and the force matching procedure, and find that both methodologies give similar results. The results of the FPMD simulations are compared to all-atom simulations of the same system and we find that differences between these simulations and the ones using the hybrid scheme are in a similar range as the differences obtained when using different atomistic force fields. Thus, a hybrid scheme yields qualitatively correct results in the strong non-equilibrium situation the system is experiencing in FPMD simulations.

1.
E.
Evans
,
Annu. Rev. Biophys. Biomol. Struct.
30
,
105
(
2001
).
2.
K. C.
Neuman
and
A.
Nagy
,
Nat. Methods
5
,
491
(
2008
).
3.
G.
Žoldák
and
M.
Rief
,
Curr. Opin. Struct. Biol.
23
,
48
(
2013
).
4.
O. K.
Dudko
,
Q. Rev. Biophys.
49
,
1
(
2016
).
5.
M.
Sotomayor
and
K.
Schulten
,
Science
316
,
1144
(
2007
).
6.
S.
Izrailev
,
S.
Stepaniants
,
M.
Balsera
,
Y.
Oono
, and
K.
Schulten
,
Biophys. J.
72
,
1568
(
1997
).
7.
B.
Isralewitz
,
M.
Gao
, and
K.
Schulten
,
Curr. Opin. Struct. Biol.
11
,
224
(
2001
).
8.
F.
Rico
,
L.
Gonzalez
,
I.
Casuso
,
M.
Puig-Vidal
, and
S.
Scheuring
,
Science
342
,
741
(
2013
).
9.
G.
Ozer
,
E. F.
Valeev
,
S.
Quirk
, and
R.
Hernandez
,
J. Chem. Theory Comput.
6
,
3026
(
2010
).
10.
J. J.
Booth
and
D. V.
Shalashilin
,
J. Phys. Chem. B
120
,
700
(
2016
).
11.
R.
Tapia-Rojo
,
S.
Arregui
,
J. J.
Mazo
, and
F.
Falo
,
J. Chem. Phys.
141
,
135102
(
2014
).
12.
C.
Hyeon
and
D.
Thirumalai
,
Proc. Natl. Acad. Sci. U. S. A.
102
,
6789
(
2005
).
13.
R. B.
Best
and
G.
Hummer
,
J. Am. Chem. Soc.
130
,
3706
(
2008
).
14.
L. Y.
Chen
,
Phys. Chem. Chem. Phys.
13
,
6176
(
2011
).
15.
L.
Uribe
,
S.
Jaschonek
,
J.
Gauss
, and
G.
Diezemann
,
J. Chem. Phys.
142
,
204901
(
2015
).
16.
S.
Kumar
and
M. S.
Li
,
Phys. Rep.
486
,
1
(
2010
).
17.
M.
Kouza
,
P. D.
Lan
,
A. M.
Gabovich
,
A.
Kolinski
, and
M. S.
Li
,
J. Chem. Phys.
146
,
135101
(
2017
).
18.
M.
Praprotnik
,
L.
Delle Site
, and
K.
Kremer
,
Phys. Rev. E
73
,
066701
(
2006
).
19.
S.
Izvekov
and
G. A.
Voth
,
J. Chem. Theory Comput.
5
,
3232
(
2009
).
20.
A. J.
Rzepiela
,
M.
Louhivuori
,
C.
Peter
, and
S. J.
Marrink
,
Phys. Chem. Chem. Phys.
13
,
10437
(
2011
).
21.
M.
Janke
,
Y.
Rudzevich
,
O.
Molokanova
,
T.
Metzroth
,
I.
Mey
,
G.
Diezemann
,
P.
Marszalek
,
J.
Gauss
,
V.
Böhmer
, and
A.
Janshoff
,
Nat. Nanotechnol.
4
,
225
(
2009
).
22.
T.
Schlesier
,
T.
Metzroth
,
A.
Janshoff
,
J.
Gauss
, and
G.
Diezemann
,
J. Phys. Chem. B
115
,
6445
(
2011
).
23.
T.
Schlesier
and
G.
Diezemann
,
J. Phys. Chem. B
117
,
1862
(
2013
).
24.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
,
J. Chem. Theory Comput.
4
,
435
(
2008
).
25.
W. L.
Jorgensen
and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
110
,
1657
(
1988
).
26.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
118
,
11225
(
1996
).
27.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
28.
M.
Allen
and
D.
Tildesley
,
Computer Simulations of Liquids
(
Oxford Science Publications
,
Oxford
,
1987
).
29.
B.
Hess
,
H.
Bekker
,
H.
Berendsen
, and
J.
Fraajie
,
J. Comput. Phys.
18
,
1463
(
1997
).
30.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
,
J. Chem. Phys.
126
,
014101
(
2007
).
31.
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
(
1981
).
32.
D.
Reith
,
M.
Pütz
, and
F.
Müller-Plathe
,
J. Comput. Chem.
24
,
1624
(
2003
).
33.
P.
Ganguly
,
D.
Mukherji
,
C.
Junghans
, and
N. F. A.
van der Vegt
,
J. Chem. Theory Comput.
8
,
1802
(
2012
).
34.
P.
Carbone
,
H. A. K.
Varzaneh
,
X.
Chen
, and
F.
Müller-Plathe
,
J. Chem. Phys.
128
,
064904
(
2008
).
35.
S.
Izvekov
,
M.
Parrinello
,
C. J.
Burnham
, and
G. A.
Voth
,
J. Chem. Phys.
120
,
10896
(
2004
).
36.
S.
Izvekov
and
G. A.
Voth
,
J. Phys. Chem. B
109
,
2469
(
2005
).
37.
S.
Izvekov
and
G. A.
Voth
,
J. Chem. Phys.
123
,
134105
(
2005
).
38.
W. G.
Noid
,
J.-W.
Chu
,
G. S.
Ayton
,
V.
Krishna
,
S.
Izvekov
,
G. A.
Voth
,
A.
Das
, and
H. C.
Andersen
,
J. Chem. Phys.
128
,
244114
(
2008
).
39.
W. G.
Noid
,
P.
Liu
,
Y.
Wang
,
J.-W.
Chu
,
G. S.
Ayton
,
S.
Izvekov
,
H. C.
Andersen
, and
G. A.
Voth
,
J. Chem. Phys.
128
,
244115
(
2008
).
40.
V.
Rühle
,
C.
Junghans
,
A.
Lukyanov
,
K.
Kremer
, and
D.
Andrienko
,
J. Chem. Theory Comput.
5
,
3211
(
2009
).
41.
P.
Depa
,
C.
Chen
, and
J. K.
Maranas
,
J. Chem. Phys.
134
,
014903
(
2011
).
42.
S.
Izvekov
and
G. A.
Voth
,
J. Chem. Phys.
125
,
151101
(
2006
).
43.
C.
Hijón
,
P.
Español
,
E.
Vanden-Eijnden
, and
R.
Delgado-Buscalioni
,
Faraday Discuss.
144
,
301
(
2010
).
44.
D.
Fritz
,
K.
Koschke
,
V. A.
Harmandaris
,
N. F. A.
van der Vegt
, and
K.
Kremer
,
Phys. Chem. Chem. Phys.
13
,
10412
(
2011
).
45.
G.
Diezemann
and
A.
Janshoff
,
J. Chem. Phys.
129
,
084904
(
2008
).
46.
G.
Diezemann
,
J. Chem. Phys.
140
,
184905
(
2014
).
47.
S.
Jaschonek
and
G.
Diezemann
,
J. Chem. Phys.
146
,
124901
(
2017
).
48.
C.
Oostenbrink
,
A.
Villa
,
A.
Mark
, and
W.
van Gunsteren
,
J. Comput. Chem.
25
,
1656
(
2004
).

Supplementary Material

You do not currently have access to this content.