Condensed-to-atom Fukui functions which reflect the atomic reactivity like the tendency susceptible to either nucleophilic or electrophilic attack demonstrate the bonding trend of an atom in a molecule. Accordingly, Fukui functions based concepts, that is, bonding reactivity descriptors which reveal the bonding properties of molecules in the reaction were put forward and then applied to pericyclic and cluster reactions to confirm their effectiveness and reliability. In terms of the results from the bonding descriptors, a covalent bond can readily be predicted between two atoms with large Fukui functions (i.e., one governs nucleophilic attack while the other one governs electrophilic attack, or both of them govern radical attacks) for pericyclic reactions. For SinOm clusters’ reactions, the clusters with a low O atom ratio readily form a bond between two Si atoms with big values of their Fukui functions in which they respectively govern nucleophilic and electrophilic attacks or both govern radical attacks. Also, our results from bonding descriptors show that Si—Si bonds can be formed via the radical mechanism between two Si atoms, and formations of Si—O and O—O bonds are possible when the O content is high. These results conform with experimental findings and can help experimentalists design appropriate clusters to synthesize Si nanowires with high yields. The approach established in this work could be generalized and applied to study reactivity properties for other systems.

1.
S.
Shaik
and
P. C.
Hiberty
,
A Chemist’s Guide to Valence Bond Theory
(
Wiley-Interscience
,
New York
,
2008
).
2.
P. W.
Ayers
,
C.
Morell
,
D.
De Proft
, and
P.
Geerlings
,
Chem. - Eur. J.
13
,
8240
(
2007
).
3.
S. B.
Liu
,
Acta Phys.-Chim. Sin.
25
,
590
(
2009
).
4.
P. K.
Chattaraj
,
Chemical Reactivity Theory: A Density Functional View
(
Taylor & Francis/CRC Press
,
Florida
,
2009
).
5.
R.
Hoffmann
and
R. B.
Woodward
,
Acc. Chem. Res.
1
,
17
(
1968
).
6.
K.
Fukui
,
T.
Yonezawa
, and
H.
Shingu
,
J. Chem. Phys.
20
,
722
(
1952
).
7.
P. K.
Chattaraj
,
U.
Sarkar
, and
D. R.
Roy
,
Chem. Rev.
106
,
2065
(
2006
).
9.
P.
Geerlings
,
F. D.
Proft
, and
W.
Langenaeker
,
Chem. Rev.
103
,
1793
(
2003
).
10.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
New York
,
1989
).
11.
R. G.
Parr
and
W.
Yang
,
Annu. Rev. Phys. Chem.
46
,
701
(
1995
).
12.
P. W.
Ayers
and
M.
Levy
,
Theor. Chem. Acc.
103
,
353
(
2000
).
13.
P. W.
Ayers
,
W.
Yang
, and
L. J.
Bartolotti
, in
Chemical Reactivity Theory: A Density Functional View
, edited by
P. K.
Chattaraj
(
Taylor & Francis/CRC Press
,
Boca Raton
,
2009
), Chap. 18, p.
255
.
14.
W.
Yang
and
R. G.
Parr
,
Proc. Natl. Acad. Sci. USA
82
,
6723
(
1985
).
15.
R. G.
Parr
and
W.
Yang
,
J. Am. Chem. Soc.
106
,
4049
(
1984
).
16.
W.
Yang
and
W. J.
Mortier
,
J. Am. Chem. Soc.
108
,
5708
(
1986
).
17.
P. W.
Ayers
,
Theor. Chem. Acc.
106
,
271
(
2001
).
18.
W.
Yang
,
R. G.
Parr
, and
R.
Pucci
,
J. Chem. Phys.
81
,
2862
(
1984
).
19.
T. A.
Albright
,
J. K.
Burdett
, and
M. H.
Whangbo
,
Orbital Interactions in Chemistry
(
Wiley-Interscience
,
New York
,
1985
).
20.
H.
Fujimoto
,
K.
Fukui
, and
G.
Klopman
,
Chemical Reactivity and Reaction Paths
, Intermolecular Interactions and Chemical Reactivity (
Wiley-Interscience
,
New York
,
1974
), pp.
23
54
.
21.
J. S. M.
Anderson
,
J.
Melin
, and
P. W.
Ayers
,
J. Chem. Theory Comput.
3
,
358
(
2007
).
22.
P. W.
Ayers
,
Faraday Discuss.
135
,
161
(
2007
).
23.
M.
Berkowitz
,
J. Am. Chem. Soc.
109
,
4823
(
1987
).
24.
M.
Torrent-Sucarrat
,
F.
De Proft
,
P.
Geerlings
, and
P. W.
Ayers
,
Chem. - Eur. J.
14
,
8652
(
2008
).
25.
M. J.
Frisch
 et al, gaussian 09, Revision D. 01,
Gaussian, Inc.
,
2013
.
26.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
27.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
28.
T. S.
Chu
,
R. Q.
Zhang
, and
H. F.
Cheung
,
J. Phys. Chem. B
105
,
1705
(
2001
).
29.
R. Q.
Zhang
,
T. S.
Chu
,
H. F.
Cheung
,
N.
Wang
, and
S. T.
Lee
,
Mater. Sci. Eng., C
16
,
31
(
2001
).
30.
R. Q.
Zhang
,
T. S.
Chu
,
H. F.
Cheung
,
N.
Wang
, and
S. T.
Lee
,
Phys. Rev. B
64
,
113304
(
2001
).
31.
R. Q.
Zhang
and
W. J.
Fan
,
J. Cluster Sci.
17
,
541
(
2006
).
32.
R. Q.
Zhang
,
M. W.
Zhao
, and
S. T.
Lee
,
Phys. Rev. Lett.
93
,
095503
(
2004
).
33.
J. P.
Foster
and
F.
Weinhold
,
J. Am. Chem. Soc.
102
,
7211
(
1980
).
34.
A. E.
Reed
,
L. A.
Curtiss
, and
F.
Weinhold
,
Chem. Rev.
88
,
899
(
1988
).
35.
A. E.
Reed
,
R. B.
Weinstock
, and
F.
Weinhold
,
J. Chem. Phys.
83
,
735
(
1985
).
36.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
37.
L.
Goodman
and
R. R.
Sauers
,
J. Comput. Chem.
28
,
269
(
2007
).
38.
R. K.
Roy
,
K.
Hirao
,
S.
Krishnamurty
, and
S.
Pal
,
J. Chem. Phys.
115
,
2901
(
2001
).
39.
R. K.
Roy
,
K.
Hirao
, and
S.
Pal
,
J. Chem. Phys.
113
,
1372
(
2000
).
40.
R. K.
Roy
,
S.
Pal
, and
K.
Hirao
,
J. Chem. Phys.
110
,
8236
(
1999
).
41.
P.
Bultnick
,
R.
Carbó-Dorca
, and
W.
Langenaeker
,
J. Chem. Phys.
118
,
4349
(
2003
).
42.
P.
Bultnick
and
R.
Carbó-Dorca
,
J. Math. Chem.
34
,
67
(
2003
).
43.
P.
Zhou
,
P. W.
Ayers
,
S.
Liu
, and
T.
Li
,
Phys. Chem. Chem. Phys.
14
,
9890
(
2012
).
44.
Y.
Li
and
K. N.
Houk
,
J. Am. Chem. Soc.
115
,
7478
(
1993
).
45.
K. N.
Houk
,
Y.-T.
Lin
, and
F. K.
Brown
,
J. Am. Chem. Soc.
108
,
554
(
1986
).
46.
S.
Yamabe
,
K.
Kuwata
, and
T.
Minato
,
Theor. Chem. Acc.
102
,
139
(
1999
).
47.
A. M.
Morales
and
C. M.
Lieber
,
Science
279
,
208
(
1998
).
48.
T.
Ono
,
H.
Saitoh
, and
M.
Esashi
,
Appl. Phys. Lett.
70
,
1852
(
1997
).
49.
N.
Wang
,
Y. H.
Tang
,
Y. F.
Zhang
,
C. S.
Lee
, and
S. T.
Lee
,
Phys. Rev. B
58
,
R16024
(
1998
).
50.
N.
Wang
,
Y. F.
Zhang
,
Y. H.
Tong
,
C. S.
Lee
, and
S. T.
Lee
,
Appl. Phys. Lett.
73
,
3902
(
1998
).
51.
R. Q.
Zhang
,
Y.
Lifshitz
, and
S. T.
Lee
,
Adv. Mater.
15
,
635
(
2003
).
52.
G.
Klopman
,
J. Am. Chem. Soc.
90
,
223
(
1968
).
53.
J.
Melin
,
F.
Aparicio
,
V.
Subramanian
,
M.
Galvan
, and
P. K.
Chattaraj
,
J. Phys. Chem. A
108
,
2487
(
2004
).

Supplementary Material

You do not currently have access to this content.