We propose a novel approach to cavity-ring-down-spectroscopy (CRDS) in which spectra acquired with a frequency-agile rapid-scanning (FARS) scheme, i.e., with a laser sideband stepped across the modes of a high-finesse cavity, are interleaved with one another by a sub-millisecond readjustment of the cavity length. This brings to time acquisitions below 20 s for few-GHz-wide spectra composed of a very high number of spectral points, typically 3200. Thanks to the signal-to-noise ratio easily in excess of 10 000, each FARS-CRDS spectrum is shown to be sufficient to determine the line-centre frequency of a Doppler broadened line with a precision of 2 parts over 1011, thus very close to that of sub-Doppler regimes and in a few-seconds time scale. The referencing of the probe laser to a frequency comb provides absolute accuracy and long-term reproducibility to the spectrometer and makes it a powerful tool for precision spectroscopy and line-shape analysis. The experimental approach is discussed in detail together with experimental precision and accuracy tests on the (30 012) (00 001) P12e line of CO2 at ∼1.57 μm.

1.
M. L.
Niu
,
E. J.
Salumbides
,
G. D.
Dickenson
,
K. S. E.
Eikema
, and
W.
Ubachs
, “
Precision spectroscopy of the X1Σg+, v = 0 1 (J = 0–2) rovibrational splittings in H2, HD and D2
,”
J. Mol. Spectrosc.
300
,
44
54
(
2014
).
2.
C.
Daussy
,
M.
Guinet
,
A.
Amy-Klein
,
K.
Djerroud
,
Y.
Hermier
,
S.
Briaudeau
,
C. J.
Bordé
, and
C.
Chardonnet
, “
Direct determination of the Boltzmann constant by an optical method
,”
Phys. Rev. Lett.
98
,
250801
(
2007
).
3.
L.
Moretti
,
A.
Castrillo
,
E.
Fasci
,
M. D.
De Vizia
,
G.
Casa
,
G.
Galzerano
,
A.
Merlone
,
P.
Laporta
, and
L.
Gianfrani
, “
Determination of the Boltzmann constant by means of precision measurements of H218O line shapes at 1:39 μm
,”
Phys. Rev. Lett.
111
,
060803
(
2013
).
4.
A.
Campargue
,
S.
Kassi
,
K.
Pachucki
, and
J.
Komasa
, “
The absorption spectrum of H2: CRDS measurements of the (2-0) band, review of the literature data and accurate ab-initio line list up to 35 000 cm−1
,”
Phys. Chem. Chem. Phys.
14
,
802
(
2012
).
5.
S.
Kassi
,
A.
Campargue
,
K.
Pachucki
, and
J.
Komasa
, “
The absorption spectrum of D2: Ultrasensitive cavity ring down spectroscopy of the (2–0) band near 1.7 μm and accurate ab initio line list up to 24 000 cm−1
,”
J. Chem. Phys.
136
,
184309
(
2012
).
6.
J.
Burkart
,
T.
Sala
,
D.
Romanini
,
M.
Marangoni
,
A.
Campargue
, and
S.
Kassi
, “
Communication: Saturated CO2 absorption near 1.6 μm for kilohertz-accuracy transition frequencies
,”
J. Chem. Phys.
142
,
191103
(
2015
).
7.
C.-F.
Cheng
,
J.
Wang
,
Y.
R Sun
,
Y.
Tan
,
P.
Kang
, and
S.-M.
Hu
, “
Doppler broadening thermometry based on cavity ring-down spectroscopy
,”
Metrologia
52
,
S385
S393
(
2015
).
8.
T. G.
Spence
,
C. C.
Harb
,
B. A.
Paldus
,
R. N.
Zare
,
B.
Willke
, and
R. L.
Byer
, “
A laser-locked cavity ring-down spectrometer employing an analog detection scheme
,”
Rev. Sci. Instrum.
71
,
347
353
(
2000
).
9.
R. Z.
Martínez
,
M.
Metsälä
,
O.
Vaittinen
,
T.
Lantta
, and
L.
Halonen
, “
Laser-locked, high-repetition-rate cavity ringdown spectrometer
,”
J. Opt. Soc. Am. B
23
,
727
740
(
2006
).
10.
A.
Cygan
,
D.
Lisak
,
P.
Masłowski
,
K.
Bielska
,
S.
Wójtewicz
,
J.
Domysławska
,
R. S.
Trawinski
,
R.
Ciuryło
,
H.
Abe
, and
J. T.
Hodges
, “
Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer
,”
Rev. Sci. Instrum.
82
,
063107
(
2011
).
11.
K.
Bielska
,
S.
Wójtewicz
,
P.
Morzyǹski
,
P.
Ablewski
,
A.
Cygan
,
M.
Bober
,
J.
Domysławska
,
M.
Zawada
,
R.
Ciuryło
,
P.
Masłowski
, and
D.
Lisak
, “
Absolute frequency determination of molecular transition in the Doppler regime at kHz level of accuracy
,”
J. Quant. Spectrosc. Radiat. Transfer
201
,
156
160
(
2017
).
12.
G.-W.
Truong
,
K. O.
Douglass
,
S. E.
Maxwell
,
R. D.
van Zee
,
D. F.
Plusquellic
,
J. T.
Hodges
, and
D. A.
Long
, “
Frequency-agile, rapid scanning spectroscopy
,”
Nat. Photonics
7
,
532
(
2013
).
13.
A.
Cygan
,
D.
Lisak
,
P.
Morzyński
,
M.
Bober
,
M.
Zawada
,
E.
Pazderski
, and
R.
Ciuryło
, “
Cavity mode-width spectroscopy with widely tunable ultra narrow laser
,”
Opt. Express
21
,
29744
29754
(
2013
).
14.
J.
Burkart
,
D.
Romanini
, and
S.
Kassi
, “
Optical feedback frequency stabilized cavity ring-down spectroscopy
,”
Opt. Lett.
39
,
4695
4698
(
2014
).
15.
D. A.
Long
,
A. J.
Fleisher
,
S.
Wójtewicz
, and
T.
Hodges
, “
Quantum-noise-limited cavity ring-down spectroscopy
,”
Appl. Phys. B
115
,
149
153
(
2014
).
16.
N. H.
Ngo
,
D.
Lisak
,
H.
Tran
, and
J. M.
Hartmann
, “
An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes
,”
J. Quant. Spectrosc. Radiat. Transfer
129
,
89
100
(
2013
).
17.
D.
Gatti
,
T.
Sala
,
R.
Gotti
,
L.
Cocola
,
L.
Poletto
,
M.
Prevedelli
,
P.
Laporta
, and
M.
Marangoni
, “
Comb-locked cavity ring-down spectrometer
,”
J. Chem. Phys.
142
,
074201
(
2015
).
18.
F.
Tauser
,
A.
Leitenstorfer
, and
W.
Zinth
, “
Amplified femtosecond pulses from an Er:fiber system: Nonlinear pulse shortening and self-referencing detection of the carrier-envelope phase evolution
,”
Opt. Express
11
,
594
600
(
2003
).
19.
J.
Burkart
,
T.
Sala
,
S.
Kassi
,
D.
Romanini
, and
M.
Marangoni
, “
Optical phase cloning by an integrated dual-parallel Mach–Zehnder modulator
,”
Opt. Lett.
40
,
816
819
(
2015
).
20.
H.
Huang
and
K. K.
Lehmann
, “
Effects of linear birefringence and polarization-dependent loss of supermirrors in cavity ring-down spectroscopy
,”
Appl. Opt.
47
,
3817
3827
(
2008
).
21.
S.
Twagirayezu
,
M. J.
Cich
,
T. J.
Sears
,
C. P.
McRaven
, and
G. E.
Hall
, “
Frequency-comb referenced spectroscopy of ν4- and ν5-excited hot bands in the 1.5 μm spectrum of C2H2
,”
J. Mol. Spectrosc.
316
,
64
71
(
2015
).
22.
D.
Gatti
,
R.
Gotti
,
A.
Gambetta
,
M.
Belmonte
,
G.
Galzerano
,
P.
Laporta
, and
M.
Marangoni
, “
Comb-locked Lamb-dip spectrometer
,”
Sci. Rep.
6
,
27183
(
2016
).
23.
V. M.
Devi
,
D. C.
Benner
,
L. R.
Brown
,
C. E.
Miller
, and
R. A.
Toth
, “
Line mixing and speed dependence in CO2 at 6348 cm−1: Positions, intensities, and air- and self-broadening derived with constrained multispectrum analysis
,”
J. Mol. Spectrosc.
242
,
90
117
(
2007
).
24.
L. S.
Rothman
,
I. E.
Gordon
,
Y.
Babikov
,
A.
Barbe
,
D.
Chris Benner
,
P. F.
Bernath
,
M.
Birk
,
L.
Bizzocchi
,
V.
Boudon
,
L. R.
Brown
,
A.
Campargue
,
K.
Chance
,
E. A.
Cohen
,
L. H.
Coudert
,
V. M.
Devi
,
B. J.
Drouin
,
A.
Fayt
,
J.-M.
Flaud
,
R. R.
Gamache
,
J. J.
Harrison
,
J.-M.
Hartmann
,
C.
Hill
,
J. T.
Hodges
,
D.
Jacquemart
,
A.
Jolly
,
J.
Lamouroux
,
R. J.
Le Roy
,
G.
Li
,
D. A.
Long
,
O. M.
Lyulin
,
C. J.
Mackie
,
S. T.
Massie
,
S.
Mikhailenko
,
H. S. P.
Müller
,
O. V.
Naumenko
,
A. V.
Nikitin
,
J.
Orphal
,
V.
Perevalov
,
A.
Perrin
,
E. R.
Polovtseva
,
C.
Richard
,
M. A. H.
Smith
,
E.
Starikova
,
K.
Sung
,
S.
Tashkun
,
J.
Tennyson
,
G. C.
Toon
 Vl
,
G.
Tyuterev
, and
G.
Wagner
,
J. Quant. Spectrosc. Radiat. Transfer
130
,
4
(
2013
).
25.
D. A.
Long
,
S.
Wójtewicz
,
C. E.
Miller
, and
J. T.
Hodges
, “
Frequency-agile, rapid scanning cavity ring-down spectroscopy(FARS-CRDS) measurements of the (30012)-(00001) near-infrared carbon dioxide band
,”
J. Quant. Spectrosc. Radiat. Transfer
161
,
35
40
(
2015
).
You do not currently have access to this content.