We investigate the first passage problem for multiple particles that diffuse towards a target, partially adsorb there, and then desorb after a finite exponentially distributed residence time. We search for the first time when m particles undergoing such reversible target-binding kinetics are found simultaneously on the target that may trigger an irreversible chemical reaction or a biophysical event. Even if the particles are independent, the finite residence time on the target yields an intricate temporal coupling between particles. We compute analytically the mean first passage time (MFPT) for two independent particles by mapping the original problem to higher-dimensional surface-mediated diffusion and solving the coupled partial differential equations. The respective effects of the adsorption and desorption rates on the MFPT are revealed and discussed.

1.
S.
Redner
,
A Guide to First Passage Processes
(
Cambridge University Press
,
Cambridge
,
2001
).
2.
First-Passage Phenomena and Their Applications
, edited by
R.
Metzler
,
G.
Oshanin
, and
S.
Redner
(
World Scientific
,
Singapore
,
2014
).
3.
O.
Bénichou
and
R.
Voituriez
, “
From first-passage times of random walks in confinement to geometry-controlled kinetics
,”
Phys. Rep.
539
,
225
284
(
2014
).
4.
D.
Holcman
and
Z.
Schuss
,
Stochastic Narrow Escape in Molecular and Cellular Biology: Analysis and Applications
(
Springer
,
New York
,
2015
).
5.
A.
Singer
,
Z.
Schuss
,
D.
Holcman
, and
R. S.
Eisenberg
, “
Narrow escape, Part I
,”
J. Stat. Phys.
122
,
437
463
(
2006
).
6.
Z.
Schuss
,
A.
Singer
, and
D.
Holcman
, “
The narrow escape problem for diffusion in cellular microdomains
,”
Proc. Natl. Acad. Sci. U. S. A.
104
,
16098
(
2007
).
7.
S. B.
Yuste
and
K.
Lindenberg
, “
Subdiffusive target problem: Survival probability
,”
Phys. Rev. E
76
,
051114
(
2007
).
8.
O.
Bénichou
and
R.
Voituriez
, “
Narrow-escape time problem: Time needed for a particle to exit a confining domain through a small window
,”
Phys. Rev. Lett.
100
,
168105
(
2008
).
9.
S.
Pillay
,
M. J.
Ward
,
A.
Peirce
, and
T.
Kolokolnikov
, “
An asymptotic analysis of the mean first passage time for narrow escape problems: Part I: Two-dimensional domains
,”
Multiscale Model. Simul.
8
,
803
835
(
2010
).
10.
A. F.
Cheviakov
,
M. J.
Ward
, and
R.
Straube
, “
An asymptotic analysis of the mean first passage time for narrow escape problems: Part II: The sphere
,”
Multiscale Model. Simul.
8
,
836
870
(
2010
).
11.
C.
Caginalp
and
X.
Chen
, “
Analytical and numerical results for an escape problem
,”
Arch. Ration. Mech. Anal.
203
,
329
342
(
2012
).
12.
S. A.
Isaacson
and
J.
Newby
, “
Uniform asymptotic approximation of diffusion to a small target
,”
Phys. Rev. E
88
,
012820
(
2013
).
13.
J.-F.
Rupprecht
,
O.
Bénichou
,
D. S.
Grebenkov
, and
R.
Voituriez
, “
Exit time distribution in spherically symmetric two-dimensional domains
,”
J. Stat. Phys.
158
,
192
230
(
2015
).
14.
A.
Godec
and
R.
Metzler
, “
Universal proximity effect in target search kinetics in the few-encounter limit
,”
Phys. Rev. X
6
,
041037
(
2016
).
15.
D. S.
Grebenkov
, “
Universal formula for the mean first passage time in planar domains
,”
Phys. Rev. Lett.
117
,
260201
(
2016
).
16.
J. S.
Marshall
, “
Analytical solutions for an escape problem in a disc with an arbitrary distribution of exit holes along its boundary
,”
J. Stat. Phys.
165
,
920
952
(
2016
).
17.
D. S.
Grebenkov
and
J.-F.
Rupprecht
, “
The escape problem for mortal walkers
,”
J. Chem. Phys.
146
,
084106
(
2017
).
18.
D. S.
Grebenkov
and
G.
Oshanin
, “
Diffusive escape through a narrow opening: New insights into a classic problem
,”
Phys. Chem. Chem. Phys.
19
,
2723
2739
(
2017
).
19.
D.
Holcman
and
Z.
Schuss
, “
The narrow escape problem
,”
SIAM Rev.
56
,
213
257
(
2014
).
20.
O.
Kochubey
,
Y.
Han
, and
R.
Schneggenburger
, “
Developmental regulation of the intracellular Ca2+ sensitivity of vesicle fusion and Ca2+-secretion coupling at the rat calyx of Held
,”
J. Physiol.
587
,
3009
3023
(
2009
).
21.
Y.
Nakamura
 et al, “
Nanoscale distribution of presynaptic Ca2+ channels and its impact on vesicular release during development
,”
Neuron
85
,
145
158
(
2015
).
22.
C.
Guerrier
and
D.
Holcman
, “
Hybrid Markov-mass action law model for cell activation by rare binding events: Application to calcium induced vesicular release at neuronal synapses
,”
Sci. Rep.
6
,
35506
(
2016
).
23.
G. H.
Weiss
,
K. E.
Shuler
, and
K.
Lindenberg
, “
Order statistics for first passage times in diffusion processes
,”
J. Stat. Phys.
31
,
255
278
(
1983
).
24.
O.
Bénichou
,
M.
Moreau
, and
G.
Oshanin
, “
Kinetics of stochastically gated diffusion-limited reactions and geometry of random walk trajectories
,”
Phys. Rev. E
61
,
3388
(
2000
).
25.
A.
Godec
and
R.
Metzler
, “
First passage time statistics for two-channel diffusion
,”
J. Phys. A: Math. Theor.
50
,
084001
(
2017
).
26.
P. C.
Bressloff
, “
Stochastic switching in biology: From genotype to phenotype
,”
J. Phys. A: Math. Theor.
50
,
133001
(
2017
).
27.
O.
Bénichou
,
D. S.
Grebenkov
,
P.
Levitz
,
C.
Loverdo
, and
R.
Voituriez
, “
Optimal reaction time for surface-mediated diffusion
,”
Phys. Rev. Lett.
105
,
150606
(
2010
).
28.
O.
Bénichou
,
D. S.
Grebenkov
,
P.
Levitz
,
C.
Loverdo
, and
R.
Voituriez
, “
Mean first-passage time of surface-mediated diffusion in spherical domains
,”
J. Stat. Phys.
142
,
657
685
(
2011
).
29.
J.-F.
Rupprecht
,
O.
Bénichou
,
D. S.
Grebenkov
, and
R.
Voituriez
, “
Kinetics of active surface-mediated diffusion in spherically symmetric domains
,”
J. Stat. Phys.
147
,
891
918
(
2012
).
30.
J.-F.
Rupprecht
,
O.
Bénichou
,
D. S.
Grebenkov
, and
R.
Voituriez
, “
Exact mean exit time for surface-mediated diffusion
,”
Phys. Rev. E
86
,
041135
(
2012
).
31.
F.
Rojo
and
C. E.
Budde
, “
Enhanced diffusion through surface excursion: A master-equation approach to the narrow-escape-time problem
,”
Phys. Rev. E
84
,
021117
(
2011
).
32.
F.
Rojo
,
C. E.
Budde
, Jr.
,
H. S.
Wio
, and
C. E.
Budde
, “
Enhanced transport through desorption-mediated diffusion
,”
Phys. Rev. E
87
,
012115
(
2013
).
33.
O.
Bénichou
,
D. S.
Grebenkov
,
L.
Hillairet
,
L.
Phun
,
R.
Voituriez
, and
M.
Zinsmeister
, “
Mean exit time for surface-mediated diffusion: Spectral analysis and asymptotic behavior
,”
Anal. Math. Phys.
5
,
321
(
2015
).
34.
G.
Oshanin
,
A.
Stemmer
,
S.
Luding
, and
A.
Blumen
, “
Smoluchowski approach for three-body reactions in one dimension
,”
Phys. Rev. E
52
,
5800
(
1995
).
35.
G.
Oshanin
and
A.
Blumen
, “
Kinetic description of diffusion-limited reactions in random catalytic media
,”
J. Chem. Phys.
108
,
1140
(
1998
).
36.
F. C.
Collins
and
G. E.
Kimball
, “
Diffusion-controlled reaction rates
,”
J. Colloid Sci.
4
,
425
(
1949
).
37.
H.
Sano
and
M.
Tachiya
, “
Partially diffusion-controlled recombination
,”
J. Chem. Phys.
71
,
1276
(
1979
).
38.
D.
Shoup
and
A.
Szabo
, “
Role of diffusion in ligand binding to macromolecules and cell-bound receptors
,”
Biophys. J.
40
,
33
(
1982
).
39.
B.
Sapoval
, “
General formulation of Laplacian transfer across irregular surfaces
,”
Phys. Rev. Lett.
73
,
3314
(
1994
).
40.
D. S.
Grebenkov
, “
Searching for partially reactive sites: Analytical results for spherical targets
,”
J. Chem. Phys.
132
,
034104
(
2010
).
41.
D. S.
Grebenkov
, “
Subdiffusion in a bounded domain with a partially absorbing-reflecting boundary
,”
Phys. Rev. E
81
,
021128
(
2010
).
42.
F.
Rojo
,
H. S.
Wio
, and
C. E.
Budde
, “
Narrow-escape-time problem: The imperfect trapping case
,”
Phys. Rev. E
86
,
031105
(
2012
).
43.
D. A.
Lauffenburger
and
J.
Linderman
,
Receptors: Models for Binding, Trafficking, and Signaling
(
Oxford University Press
,
1993
).
44.
D. S.
Grebenkov
, “
Partially reflected Brownian motion: A stochastic approach to transport phenomena
,” in
Focus on Probability Theory
, edited by
L. R.
Velle
(
Nova Science Publishers
,
2006
), pp.
135
169
.
45.
D. S.
Grebenkov
, “
Residence times and other functionals of reflected Brownian motion
,”
Phys. Rev. E
76
,
041139
(
2007
).
46.
A.
Singer
,
Z.
Schuss
,
A.
Osipov
, and
D.
Holcman
, “
Partially reflected diffusion
,”
SIAM J. Appl. Math.
68
,
844
(
2008
).
47.
P. C.
Bressloff
,
B. A.
Earnshaw
, and
M. J.
Ward
, “
Diffusion of protein receptors on a cylindrical dendritic membrane with partially absorbing traps
,”
SIAM J. Appl. Math.
68
,
1223
(
2008
).
48.
D. S.
Grebenkov
, “
Analytical representations of the spread harmonic measure density
,”
Phys. Rev. E
91
,
052108
(
2015
).
49.
C. W.
Gardiner
,
Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences
(
Springer
,
Berlin
,
1985
).
You do not currently have access to this content.